The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient
Abstract
:1. Introduction
2. Uniqueness Result for Weak Solutions in the Case
3. Uniqueness for Weak Solutions in the Case of Laplacian Operator
3.1. Existence
3.2. A Priori Estimates
3.3. Proof of Theorem 2
3.4. Uniqueness
4. Comparison Principle for Weak Solutions in the Case
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvino, A.; Ferone, V.; Mercaldo, A. Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms. Ann. Mat. Pura Appl. 2015, 194, 1169–1201. [Google Scholar] [CrossRef]
- Ferone, V.; Murat, F. Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces. J. Differ. Equ. 2014, 256, 577–608. [Google Scholar] [CrossRef]
- Grenon, N.; Murat, F.; Porretta, A. A priori estimates and existence for elliptic equations with gradient dependent term. Annali Sc. Norm. Super.-Cl. Sci. 2014, 13, 137–205. [Google Scholar] [CrossRef] [PubMed]
- Dall’Aglio, A. Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 1996, 170, 207–240. [Google Scholar] [CrossRef]
- Maso, G.D.; Malusa, A. Some properties of reachable solutions of nonlinear elliptic equations with measure data. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1997, 25, 375–396. [Google Scholar]
- Maso, G.D.; Murat, F.; Orsina, L.; Prignet, A. Renormalized solutions of elliptic equations with general measure data. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1999, 28, 741–808. [Google Scholar]
- Lions, P.-L.; Murat, F. Sur les Solutions Renormalisées d’equations Elliptiques Non Linéaires, manuscript in preparation.
- Murat, F. Soluciones Renormalizadas de EDP Elipticas no Lineales; Preprint 93023; Laboratoire d’Analyse Numérique de l’Université: Paris, France, 1993. [Google Scholar]
- Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vázquez, J.L. An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 1995, 22, 241–273. [Google Scholar]
- Alaa, N.; Pierre, M. Weak solutions of some quasilinear elliptic equations with data measures. SIAM J. Math. Anal. 1993, 24, 23–35. [Google Scholar] [CrossRef]
- Leonori, T.; Porretta, A.; Riey, G. Comparison principles for p-Laplace equations with lower order terms. Ann. Mat. Pura Appl. 2017, 196, 877–903. [Google Scholar] [CrossRef]
- Alvino, A.; Betta, M.F.; Mercaldo, A.; Volpicelli, R. Comparison result for quasi-linear elliptic equations with general growth in the gradient. Commun. Pure Appl. Anal. 2024, 23, 339–355. [Google Scholar] [CrossRef]
- Alvino, A.; Ferone, V.; Mercaldo, A. Uniqueness for a class of nonlinear elliptic equations with lower order terms. Pure Appl. Funct. Anal. 2024, 9, 1–18. [Google Scholar]
- Barles, G.; Porretta, A. Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Ann. Della Sc. Norm. Super. Pisa-Classe Sci. 2006, 5, 107–136. [Google Scholar] [CrossRef]
- Betta, M.F.; Nardo, R.D.; Mercaldo, A.; Perrotta, A. Gradient estimates and comparison principle for some nonlinear elliptic equations. Commun. Pure Appl. Anal. 2015, 14, 897–922. [Google Scholar] [CrossRef]
- Betta, M.F.; Mercaldo, A.; Murat, F.; Porzio, M.M. Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 2005, 63, 153–170. [Google Scholar] [CrossRef]
- Betta, M.F.; Mercaldo, A.; Volpicelli, R. Continuous dependence on the data for solutions to nonlinear elliptic equations with a lower order term. Ric. Mat. 2014, 63, 41–56. [Google Scholar] [CrossRef]
- Leonori, T.; Porretta, A. On the comparison principle for unbounded solutions of elliptic equations with first order terms. J. Math. Anal. Appl. 2018, 457, 1492–1501. [Google Scholar] [CrossRef]
- Mohammed, A.; Vitolo, A. The effects of nonlinear perturbation terms on comparison principles for the p-Laplacian. Bull. Math. Sci. 2024, 14, 2450005. [Google Scholar] [CrossRef]
- Oliva, F. Existence and uniqueness of solutions to some singular equations with natural growth. Ann. Mat. Pura Appl. 2021, 200, 287–314. [Google Scholar] [CrossRef]
- Porretta, A. On the comparison principle for p-laplace operators with first order terms. In Quaderni di Matematica; Department of Mathematics, Seconda Università di Napoli: Caserta, Italy, 2008; Volume 23. [Google Scholar]
- Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Boccardo, L.; Murat, F. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 1992, 19, 581–597. [Google Scholar] [CrossRef]
- Leray, J.; Lions, J.-L. Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 1965, 93, 97–107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvino, A.; Ferone, V.; Mercaldo, A. The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics 2025, 13, 63. https://doi.org/10.3390/math13010063
Alvino A, Ferone V, Mercaldo A. The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics. 2025; 13(1):63. https://doi.org/10.3390/math13010063
Chicago/Turabian StyleAlvino, Angelo, Vincenzo Ferone, and Anna Mercaldo. 2025. "The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient" Mathematics 13, no. 1: 63. https://doi.org/10.3390/math13010063
APA StyleAlvino, A., Ferone, V., & Mercaldo, A. (2025). The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient. Mathematics, 13(1), 63. https://doi.org/10.3390/math13010063