Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business
Abstract
:1. Overview of Sociophysics
2. Opinion Dynamics (OD)
2.1. Linear Models
2.2. Non-Linear Models
2.2.1. Continuous Models
2.2.2. Mixed Models
2.2.3. Discrete Models
2.3. Special Classes of Social Agents
2.3.1. Informed Agents
2.3.2. Contrarian Agents
2.3.3. Extremist Agents
2.4. Applications in Behavioral Finance/Social Trading
2.4.1. Discrete Models
2.4.2. Continuous Models
3. Group Decision Making (GDM)
3.1. Decision Making via Agent-to-Agent Influence
- When , the agents are deemed to be in agreement and therefore there is no further need to influence each other.
- When , with consensus threshold , the agents continue to influence each other and they have to compromise. Only in this case opinion update for both agents takes place.
- When , with confidence threshold , no influence takes place between the agents as they belong to a separate opinion cluster.
3.2. Decision Making via Clustering
3.3. Decision Making via Consultation
- The Peer-derived memory which is derived from the opinion sets of the other agents. Each agent has a limited memory capacity . The elements of the peer-derived memory are the opinion sets , where is the -th plan of agent derived from agent and is the utility assigned to the plan , according to the individual utility function of agent (see below).
- The Self-derived memory which consists of opinion sets. Each opinion set consists of a plan, randomly derived from the -dimensional problem space and is the utility assigned by the true utility function to the plan , adding a noise component , with .
3.4. Application in Economics
- Preference Utility: The opinion of agent is expressed as a utility vector containing utility values for each alternative with . The largest element indicates agent ’s top preference. Relative utilities with are encoded in a matrix, indicating the preference of over as evaluated by agent . All relative utilities are encoded in the opinion matrix . The normalized opinion matrix is .
- Preference Ranking: The opinion of agent is expressed as a ranking vector whose elements is an ordinal variable, indicating the ranking of each alternative. If then the alternative is agent ’s top preference. The normalized opinion matrix is , where indicates the preference of over as evaluated by agent .
- Multiplicative Preference Relation: The opinion of agent is expressed via a Pairwise Comparison Matrix with elements taking values in the interval , satisfying the condition . When then alternative is favored over while when the reverse is true. The greater the distance from 1 (i.e., closer to or closer to ), the more preferable the corresponding alternative is. The normalized opinion matrix is .
- Additive Preference Relation: The opinion of agent is expressed via a Pairwise Comparison Matrix , with elements taking values in the interval and satisfying the condition . When then alternative is favored over while when the reverse is true. The greater the distance from (i.e., closer to or closer to ), the more preferable the corresponding alternative is. The normalized opinion matrix is .
4. Knowledge Dynamics (KD)
4.1. Knowledge Exchange
4.2. Self-Innovating Agents
4.3. Application in Business
5. A Critique of Social Diffusion Dynamics in Networks
5.1. Gaps and Issues in the Application of Sociophysics in Real-World Socioeconomic Phenomena
5.2. Misalignment between Sociophysics Modelling Assumptions and Social Reality
6. Conclusions—Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Comte, A. Social Physics: From the Positive Philosophy of Auguste Comte; Kessinger Publishing, LLC: Whitefish, MT, USA, 2010; ISBN 978-1-168-72610-0. [Google Scholar]
- Săvoiu, G.; Iorga Simăn, I. Sociophysics: A New Science or a New Domain for Physicists in a Modern University. In Econophysics; Săvoiu, G., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 149–168. ISBN 978-0-12-404626-9. [Google Scholar]
- Schelling, T.C. Models of Segregation. Am. Econ. Rev. 1969, 59, 488–493. [Google Scholar]
- Weidlich, W. The Statistical Description of Polarization Phenomena in Society. Br. J. Math. Stat. Psychol. 1971, 24, 251–266. [Google Scholar] [CrossRef]
- Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Für Phys. 1925, 31, 253–258. [Google Scholar] [CrossRef]
- Callen, E.; Shapero, D. A Theory of Social Imitation. Phys. Today 1974, 27, 23–28. [Google Scholar] [CrossRef]
- Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A New Approach of Sociological Collective Behaviour: I. Mean-Behaviour Description of a Strike. J. Math. Sociol. 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Axelrod, R.; Mitchell, W.; Thomas, R.E.; Bennett, D.S.; Bruderer, E. Coalition Formation in Standard-Setting Alliances. Manag. Sci. 1995, 41, 1493–1508. [Google Scholar] [CrossRef]
- Axelrod, R. The Dissemination of Culture: A Model with Local Convergence and Global Polarization. J. Confl. Resolut. 1997, 41, 203–226. [Google Scholar] [CrossRef]
- Ball, P. Utopia Theory. Available online: https://physicsworld.com/a/utopia-theory/ (accessed on 18 March 2024).
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-38707-1. [Google Scholar]
- Schweitzer, F. Sociophysics. Phys. Today 2018, 71, 40–46. [Google Scholar] [CrossRef]
- Antoniou, I.; Reeve, M.; Stenning, V. The Information Society as a Complex System. JUCS—J. Univers. Comput. Sci. 2000, 6, 272–288. [Google Scholar] [CrossRef]
- Jovanovic, F.; Mantegna, R.N.; Schinckus, C. When Financial Economics Influences Physics: The Role of Econophysics. Int. Rev. Financ. Anal. 2019, 65, 101378. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Eugene Stanley, H. Econophysics and Sociophysics: Their Milestones & Challenges. Phys. A Stat. Mech. Its Appl. 2019, 516, 240–253. [Google Scholar] [CrossRef]
- Abelson, R.P. Mathematical Models in Social Psychology. In Advances in Experimental Social Psychology; Berkowitz, L., Ed.; Elsevier: Amsterdam, The Netherlands, 1967; Volume 3, pp. 1–54. ISBN 978-0-12-015203-2. [Google Scholar]
- Cohen, J.E.; Hajnal, J.; Newman, C.M. Approaching Consensus Can Be Delicate When Positions Harden. Stoch. Process. Their Appl. 1986, 22, 315–322. [Google Scholar] [CrossRef]
- DeGroot, M.H. Reaching a Consensus. J. Am. Stat. Assoc. 1974, 69, 118–121. [Google Scholar] [CrossRef]
- French, J.R.P. A Formal Theory of Social Power. Psychol. Rev. 1956, 63, 181–194. [Google Scholar] [CrossRef]
- Friedkin, N.; Johnsen, E. Social Influence Networks and Opinion Change. Adv. Group Process. 1999, 16, 1–29. [Google Scholar]
- Friedkin, N.E.; Johnsen, E.C. Social Influence and Opinions. J. Math. Sociol. 1990, 15, 193–206. [Google Scholar] [CrossRef]
- Lehrer, K. Social Consensus and Rational Agnoiology. Synthese 1975, 31, 141–160. [Google Scholar] [CrossRef]
- Alaali, A.; Purvis, M.A.; Savarimuthu, B.T.R. Vector Opinion Dynamics: An Extended Model for Consensus in Social Networks. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW, Australia, 9–12 December 2008; Volume 3, pp. 394–397. [Google Scholar]
- Schweighofer, S.; Garcia, D.; Schweitzer, F. An Agent-Based Model of Multi-Dimensional Opinion Dynamics and Opinion Alignment. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 093139. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J.C. Consensus Formation under Bounded Confidence. Nonlinear Anal. Theory Methods Appl. 2001, 47, 4615–4621. [Google Scholar] [CrossRef]
- Hegselmann, R.; Flache, A. Understanding Complex Social Dynamics: A Plea for Cellular Automata Based Modelling. J. Artif. Soc. Soc. Simul. 1998, 1, 1. [Google Scholar]
- Lorenz, J. Continuous Opinion Dynamics under Bounded Confidence: A Survey. Int. J. Mod. Phys. C 2007, 18, 1819–1838. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 1–2. [Google Scholar]
- Krause, U. A Discrete Nonlinear and Non-Autonomous Model of Consensus Formation. Commun. Differ. Equ. 2000, 2000, 227–236. [Google Scholar]
- Krause, U. Soziale Dynamiken mit Vielen Interakteuren. Eine Problemskizze. In Modellierung und Simulation von Dynamiken mit Vielen Interagierenden Akteuren; Krause, U., Stöckler, M., Eds.; Universität Bremen: Bremen, Germany, 1997; pp. 37–51. [Google Scholar]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing Beliefs among Interacting Agents. Adv. Complex Syst. 2000, 3, 87–98. [Google Scholar] [CrossRef]
- Weisbuch, G.; Deffuant, G.; Amblard, F.; Nadal, J.-P. Interacting Agents and Continuous Opinions Dynamics. In Heterogenous Agents, Interactions and Economic Performance; Cowan, R., Jonard, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 225–242. [Google Scholar]
- Weisbuch, G.; Deffuant, G.; Amblard, F.; Nadal, J.-P. Meet, Discuss, and Segregate! Complexity 2002, 7, 55–63. [Google Scholar] [CrossRef]
- Martins, A.C.R. Discrete Opinion Models as a Limit Case of the CODA Model. Phys. A Stat. Mech. Its Appl. 2014, 395, 352–357. [Google Scholar] [CrossRef]
- Martins, A.C.R. Trust in the CODA Model: Opinion Dynamics and the Reliability of Other Agents. Phys. Lett. A 2013, 377, 2333–2339. [Google Scholar] [CrossRef]
- Martins, A.C.R. Continuous Opinions and Discrete Actions in Opinion Dynamics Problems. Int. J. Mod. Phys. C 2008, 19, 617–624. [Google Scholar] [CrossRef]
- Clifford, P.; Sudbury, A. A Model for Spatial Conflict. Biometrika 1973, 60, 581–588. [Google Scholar] [CrossRef]
- Holley, R.A.; Liggett, T.M. Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model. Ann. Probab. 1975, 3, 643–663. [Google Scholar] [CrossRef]
- Bernardes, A.T.; Stauffer, D.; Kertész, J. Election Results and the Sznajd Model on Barabasi Network. Eur. Phys. J. B—Condens. Matter Complex Syst. 2002, 25, 123–127. [Google Scholar] [CrossRef]
- Stauffer, D. The Sznajd Model of Consensus Building with Limited Persuasion. Int. J. Mod. Phys. C 2002, 13, 315–317. [Google Scholar] [CrossRef]
- Sznajd-Weron, K. Sznajd Model and Its Applications. Acta Phys. Pol. B 2005, 36, 2537–2547. [Google Scholar]
- Sznajd-Weron, K.; Sznajd, J. Opinion Evolution in Closed Community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef]
- Galam, S. Real Space Renormalization Group and Totalitarian Paradox of Majority Rule Voting. Phys. A Stat. Mech. Its Appl. 2000, 285, 66–76. [Google Scholar] [CrossRef]
- Galam, S. Application of Statistical Physics to Politics. Phys. A Stat. Mech. Its Appl. 1999, 274, 132–139. [Google Scholar] [CrossRef]
- Galam, S. Majority Rule, Hierarchical Structures, and Democratic Totalitarianism: A Statistical Approach. J. Math. Psychol. 1986, 30, 426–434. [Google Scholar] [CrossRef]
- Krapivsky, P.L.; Redner, S. Dynamics of Majority Rule in Two-State Interacting Spin Systems. Phys. Rev. Lett. 2003, 90, 238701. [Google Scholar] [CrossRef] [PubMed]
- Arndt, J. Role of Product-Related Conversations in the Diffusion of a New Product. J. Mark. Res. 1967, 4, 291. [Google Scholar] [CrossRef]
- Kelly, J.A.; St Lawrence, J.S.; Diaz, Y.E.; Stevenson, L.Y.; Hauth, A.C.; Brasfield, T.L.; Kalichman, S.C.; Smith, J.E.; Andrew, M.E. HIV Risk Behavior Reduction Following Intervention with Key Opinion Leaders of Population: An Experimental Analysis. Am. J. Public Health 1991, 81, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Merton, R.K. (Ed.) Patterns of Influence: Local and Cosmopolitan Influentials. In Social Theory and Social Structure; The Free Press: Glencoe, IL, USA, 1957; pp. 441–474. [Google Scholar]
- Nisbet, E.C. The Engagement Model of Opinion Leadership: Testing Validity Within a European Context. Int. J. Public Opin. Res. 2006, 18, 3–30. [Google Scholar] [CrossRef]
- Watts, D.J.; Dodds, P.S. Influentials, Networks, and Public Opinion Formation. J. Consum. Res. 2007, 34, 441–458. [Google Scholar] [CrossRef]
- Afshar, M.; Asadpour, M. Opinion Formation by Informed Agents. J. Artif. Soc. Soc. Simul. 2010, 13, 1–5. [Google Scholar] [CrossRef]
- AskariSichani, O.; Jalili, M. Influence Maximization of Informed Agents in Social Networks. Appl. Math. Comput. 2015, 254, 229–239. [Google Scholar] [CrossRef]
- Couzin, I.D.; Krause, J.; Franks, N.R.; Levin, S.A. Effective Leadership and Decision-Making in Animal Groups on the Move. Nature 2005, 433, 513–516. [Google Scholar] [CrossRef]
- Halloy, J.; Sempo, G.; Caprari, G.; Rivault, C.; Asadpour, M.; Tâche, F.; Saïd, I.; Durier, V.; Canonge, S.; Amé, J.M.; et al. Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices. Science 2007, 318, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. Change Agents and Internal Communications in Organizational Networks. Phys. A Stat. Mech. Its Appl. 2019, 528, 121385. [Google Scholar] [CrossRef]
- Galam, S. Contrarian Deterministic Effects on Opinion Dynamics: “The Hung Elections Scenario”. Phys. A Stat. Mech. Its Appl. 2004, 333, 453–460. [Google Scholar] [CrossRef]
- Amblard, F.; Deffuant, G. The Role of Network Topology on Extremism Propagation with the Relative Agreement Opinion Dynamics. Phys. A Stat. Mech. Its Appl. 2004, 343, 725–738. [Google Scholar] [CrossRef]
- Deffuant, G.; Amblard, F.; Weisbuch, G.; Faure, T. How Can Extremism Prevail? A Study Based on the Relative Agreement Interaction Model. J. Artif. Soc. Soc. Simul. 2002, 5, 1. [Google Scholar]
- Deffuant, G. Comparing Extremism Propagation Patterns in Continuous Opinion Models. J. Artif. Soc. Soc. Simul. 2006, 9, 8. [Google Scholar]
- Fan, K.; Pedrycz, W. Emergence and Spread of Extremist Opinions. Phys. A Stat. Mech. Its Appl. 2015, 436, 87–97. [Google Scholar] [CrossRef]
- Khashanah, K.; Alsulaiman, T. Network Theory and Behavioral Finance in a Heterogeneous Market Environment. Complexity 2016, 21, 530–554. [Google Scholar] [CrossRef]
- Shiller, R.J.; Pound, J. Survey Evidence on Diffusion of Interest and Information among Investors. J. Econ. Behav. Organ. 1989, 12, 47–66. [Google Scholar] [CrossRef]
- Shive, S. An Epidemic Model of Investor Behavior. J. Financ. Quant. Anal. 2010, 45, 169–198. [Google Scholar] [CrossRef]
- Oldham, M. Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective. Complexity 2019, 2019, 1715624. [Google Scholar] [CrossRef]
- Simon, H.A. Rational Decision Making in Business Organizations. Am. Econ. Rev. 1979, 69, 493–513. [Google Scholar]
- Panchenko, V.; Gerasymchuk, S.; Pavlov, O.V. Asset Price Dynamics with Heterogeneous Beliefs and Local Network Interactions. J. Econ. Dyn. Control 2013, 37, 2623–2642. [Google Scholar] [CrossRef]
- Brock, W.A.; Hommes, C.H. Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model. J. Econ. Dyn. Control 1998, 22, 1235–1274. [Google Scholar] [CrossRef]
- Zubillaga, B.J.; Vilela, A.L.M.; Wang, C.; Nelson, K.P.; Stanley, H.E. A Three-State Opinion Formation Model for Financial Markets. Phys. A Stat. Mech. Its Appl. 2022, 588, 126527. [Google Scholar] [CrossRef]
- DeOliveira, M.J. Isotropic Majority-Vote Model on a Square Lattice. J. Stat. Phys. 1992, 66, 273–281. [Google Scholar] [CrossRef]
- Vilela, A.L.M.; Wang, C.; Nelson, K.P.; Stanley, H.E. Majority-Vote Model for Financial Markets. Phys. A Stat. Mech. Its Appl. 2019, 515, 762–770. [Google Scholar] [CrossRef]
- Oliveira, I.V.G.; Wang, C.; Dong, G.; Du, R.; Fiore, C.E.; Vilela, A.L.M.; Stanley, H.E. Entropy Production on Cooperative Opinion Dynamics. Chaos Solitons Fractals 2024, 181, 114694. [Google Scholar] [CrossRef]
- Vilela, A.L.M.; Zubillaga, B.J.; Wang, C.; Wang, M.; Du, R.; Stanley, H.E. Three-State Majority-Vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents. Sci Rep 2020, 10, 8255. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-H.S. Social Network Influence and Market Instability. J. Math. Econ. 2009, 45, 257–276. [Google Scholar] [CrossRef]
- Restocchi, V.; McGroarty, F.; Gerding, E.; Brede, M. Opinion Dynamics Explain Price Formation in Prediction Markets. Entropy 2023, 25, 1152. [Google Scholar] [CrossRef] [PubMed]
- DeLellis, P.; Di Meglio, A.; Lo Iudice, F. Overconfident Agents and Evolving Financial Networks. Nonlinear Dyn. 2018, 92, 33–40. [Google Scholar] [CrossRef]
- DeLellis, P.; DiMeglio, A.; Garofalo, F.; Lo Iudice, F. The Evolving Cobweb of Relations among Partially Rational Investors. PLoS ONE 2017, 12, e0171891. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.; Zanette, D.H. Coevolution of Agents and Networks: Opinion Spreading and Community Disconnection. Phys. Lett. A 2006, 356, 89–94. [Google Scholar] [CrossRef]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks. Mathematics 2020, 8, 2235. [Google Scholar] [CrossRef]
- Vazquez, F.; Eguíluz, V.M.; Miguel, M.S. Generic Absorbing Transition in Coevolution Dynamics. Phys. Rev. Lett. 2008, 100, 108702. [Google Scholar] [CrossRef] [PubMed]
- Capuano, N.; Chiclana, F.; Fujita, H.; Herrera-Viedma, E.; Loia, V. Fuzzy Group Decision Making With Incomplete Information Guided by Social Influence. IEEE Trans. Fuzzy Syst. 2018, 26, 1704–1718. [Google Scholar] [CrossRef]
- Cook, W.D. Distance-Based and Ad Hoc Consensus Models in Ordinal Preference Ranking. Eur. J. Oper. Res. 2006, 172, 369–385. [Google Scholar] [CrossRef]
- Dong, Y.; Zha, Q.; Zhang, H.; Herrera, F. Consensus Reaching and Strategic Manipulation in Group Decision Making With Trust Relationships. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 6304–6318. [Google Scholar] [CrossRef]
- Dong, Q.; Zhou, X.; Martínez, L. A Hybrid Group Decision Making Framework for Achieving Agreed Solutions Based on Stable Opinions. Inf. Sci. 2019, 490, 227–243. [Google Scholar] [CrossRef]
- Liang, H.; Dong, Y.; Ding, Z.; Urena, R.; Chiclana, F.; Herrera-Viedma, E. Consensus Reaching With Time Constraints and Minimum Adjustments in Group With Bounded Confidence Effects. IEEE Trans. Fuzzy Syst. 2020, 28, 2466–2479. [Google Scholar] [CrossRef]
- Ureña, R.; Chiclana, F.; Melançon, G.; Herrera-Viedma, E. A Social Network Based Approach for Consensus Achievement in Multiperson Decision Making. Inf. Fusion 2019, 47, 72–87. [Google Scholar] [CrossRef]
- Zha, Q.; Dong, Y.; Zhang, H.; Chiclana, F.; Herrera-Viedma, E. A Personalized Feedback Mechanism Based on Bounded Confidence Learning to Support Consensus Reaching in Group Decision Making. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3900–3910. [Google Scholar] [CrossRef]
- Zha, Q.; Liang, H.; Kou, G.; Dong, Y.; Yu, S. A Feedback Mechanism With Bounded Confidence-Based Optimization Approach for Consensus Reaching in Multiple Attribute Large-Scale Group Decision-Making. IEEE Trans. Comput. Soc. Syst. 2019, 6, 994–1006. [Google Scholar] [CrossRef]
- Du, Z.; Yu, S.; Luo, H.; Lin, X. Consensus Convergence in Large-Group Social Network Environment: Coordination between Trust Relationship and Opinion Similarity. Knowl.-Based Syst. 2021, 217, 106828. [Google Scholar] [CrossRef]
- Li, Y.; Kou, G.; Li, G.; Peng, Y. Consensus Reaching Process in Large-Scale Group Decision Making Based on Bounded Confidence and Social Network. Eur. J. Oper. Res. 2022, 303, 790–802. [Google Scholar] [CrossRef]
- Cannon-Bowers, J.A.; Salas, E.; Converse, S.A. Cognitive Psychology and Team Training: Training Shared Mental Models and Complex Systems. Hum. Factors Soc. Bull. 1990, 33, 1–4. [Google Scholar]
- Langan-Fox, J.; Wirth, A.; Code, S.; Langfield-Smith, K.; Wirth, A. Analyzing Shared and Team Mental Models. Int. J. Ind. Ergon. 2001, 28, 99–112. [Google Scholar] [CrossRef]
- Burtscher, M.J.; Manser, T. Team Mental Models and Their Potential to Improve Teamwork and Safety: A Review and Implications for Future Research in Healthcare. Saf. Sci. 2012, 50, 1344–1354. [Google Scholar] [CrossRef]
- Sayama, H.; Farrell, D.L.; Dionne, S.D. The Effects of Mental Model Formation on Group Decision Making: An Agent-Based Simulation. Complexity 2011, 16, 49–57. [Google Scholar] [CrossRef]
- Chao, X.; Kou, G.; Peng, Y.; Viedma, E.H. Large-Scale Group Decision-Making with Non-Cooperative Behaviors and Heterogeneous Preferences: An Application in Financial Inclusion. Eur. J. Oper. Res. 2021, 288, 271–293. [Google Scholar] [CrossRef]
- Chao, X.; Kou, G.; Peng, Y.; Herrera-Viedma, E.; Herrera, F. An Efficient Consensus Reaching Framework for Large-Scale Social Network Group Decision Making and Its Application in Urban Resettlement. Inf. Sci. 2021, 575, 499–527. [Google Scholar] [CrossRef]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. False Beliefs in Unreliable Knowledge Networks. Phys. A Stat. Mech. Its Appl. 2017, 470, 275–295. [Google Scholar] [CrossRef]
- Phelps, C.; Heidl, R.; Wadhwa, A. Knowledge, Networks, and Knowledge Networks: A Review and Research Agenda. J. Manag. 2012, 38, 1115–1166. [Google Scholar] [CrossRef]
- Cowan, R.; Jonard, N. Network Structure and the Diffusion of Knowledge. J. Econ. Dyn. Control 2004, 28, 1557–1575. [Google Scholar] [CrossRef]
- Luo, S.; Du, Y.; Liu, P.; Xuan, Z.; Wang, Y. A Study on Coevolutionary Dynamics of Knowledge Diffusion and Social Network Structure. Expert Syst. Appl. 2015, 42, 3619–3633. [Google Scholar] [CrossRef]
- Cowan, R.; Jonard, N. The Dynamics of Collective Invention. J. Econ. Behav. Organ. 2003, 52, 513–532. [Google Scholar] [CrossRef]
- Kim, H.; Park, Y. Structural Effects of R&D Collaboration Network on Knowledge Diffusion Performance. Expert Syst. Appl. 2009, 36, 8986–8992. [Google Scholar] [CrossRef]
- Lin, M.; Li, N. Scale-Free Network Provides an Optimal Pattern for Knowledge Transfer. Phys. A Stat. Mech. Its Appl. 2010, 389, 473–480. [Google Scholar] [CrossRef]
- Yang, G.-Y.; Hu, Z.-L.; Liu, J.-G. Knowledge Diffusion in the Collaboration Hypernetwork. Phys. A Stat. Mech. Its Appl. 2015, 419, 429–436. [Google Scholar] [CrossRef]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. Experts in Knowledge Networks: Central Positioning and Intelligent Selections. Phys. A Stat. Mech. Its Appl. 2018, 509, 890–905. [Google Scholar] [CrossRef]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. Communication Policies in Knowledge Networks. Phys. A Stat. Mech. Its Appl. 2018, 492, 360–374. [Google Scholar] [CrossRef]
- Ioannidis, E.; Varsakelis, N.; Antoniou, I. Intelligent Agents in Co-Evolving Knowledge Networks. Mathematics 2021, 9, 103. [Google Scholar] [CrossRef]
- Sankar, C.P.; Thumba, D.A.; Ramamohan, T.R.; Chandra, S.S.V.; Satheesh Kumar, K. Agent-Based Multi-Edge Network Simulation Model for Knowledge Diffusion through Board Interlocks. Expert Syst. Appl. 2020, 141, 112962. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Engo, J.; Han, B.; Li, Y.; Muehleisen, R.T. Leveraging Inter-Firm Influence in the Diffusion of Energy Efficiency Technologies: An Agent-Based Model. Appl. Energy 2020, 263, 114641. [Google Scholar] [CrossRef]
- Galam, S. (Ed.) Sociophysics: Weaknesses, Achievements, and Challenges. In Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer US: Boston, MA, USA, 2012; pp. 69–90. ISBN 978-1-4614-2032-3. [Google Scholar]
- Crass, D.; Garcia Valero, F.; Pitton, F.; Rammer, C. Protecting Innovation Through Patents and Trade Secrets: Evidence for Firms with a Single Innovation. Int. J. Econ. Bus. 2019, 26, 117–156. [Google Scholar] [CrossRef]
- Pinello, C.; Picone, P.M.; Mocciaro Li Destri, A. Co-Branding Research: Where We Are and Where We Could Go from Here. Eur. J. Mark. 2022, 56, 584–621. [Google Scholar] [CrossRef]
- Giglio, C.; Corvello, V.; Coniglio, I.M.; Kraus, S.; Gast, J. Cooperation between Large Companies and Start-Ups: An Overview of the Current State of Research. Eur. Manag. J. 2023, in press. [Google Scholar] [CrossRef]
- Parsons, T. The Structure of Social Action; The Free Press: New York, NY, USA, 1949. [Google Scholar]
- Burt, R.S. Toward a Structural Theory of Action: Network Models of Social Structure, Perception, and Action; Quantitative studies in social relations; Academic Press: New York, NY, USA, 1982; ISBN 978-0-12-147150-7. [Google Scholar]
- Antoniou, I.; Ioannidis, E.; Varsakelis, N. Co-Evolutionary Complex Networks. In Nonequilibrium Thermodynamics and Fluctuation Kinetics; Brenig, L., Brilliantov, N., Tlidi, M., Eds.; Fundamental Theories of Physics; Springer International Publishing: Cham, Switzerland, 2022; Volume 208, pp. 277–302. ISBN 978-3-031-04457-1. [Google Scholar]
- Ward, M.D.; Stovel, K.; Sacks, A. Network Analysis and Political Science. Annu. Rev. Political Sci. 2011, 14, 245–264. [Google Scholar] [CrossRef]
- Orsini, A.; Le Prestre, P.; Haas, P.M.; Brosig, M.; Pattberg, P.; Widerberg, O.; Gomez-Mera, L.; Morin, J.-F.; Harrison, N.E.; Geyer, R.; et al. Forum: Complex Systems and International Governance. Int. Stud. Rev. 2020, 22, 1008–1038. [Google Scholar] [CrossRef]
- Jervis, R. System Effects: Complexity in Political and Social Life; Princeton University Press: Princeton, NJ, USA, 1997; ISBN 978-0-691-00530-0. [Google Scholar]
- Giddens, A. The Constitution of Society. Outline of the Theory of Structuration, 1st ed.; Polity Press: Cambridge, UK, 1984; ISBN 978-0-520-05728-9. [Google Scholar]
- Schweitzer, F.; Garas, A.; Tomasello, M.V.; Vaccario, G.; Verginer, L. The Role of Network Embeddedness on the Selection of Collaboration Partners: An Agent-Based Model with Empirical Validation. Adv. Complex Syst. 2022, 25, 2250003. [Google Scholar] [CrossRef]
- Vaccario, G.; Tomasello, M.V.; Tessone, C.J.; Schweitzer, F. Quantifying Knowledge Exchange in R&D Networks: A Data-Driven Model. J. Evol. Econ. 2018, 28, 461–493. [Google Scholar] [CrossRef]
- Guzmán Rincón, A.; Carrillo Barbosa, R.L.; Segovia-García, N.; Africano Franco, D.R. Disinformation in Social Networks and Bots: Simulated Scenarios of Its Spread from System Dynamics. Systems 2022, 10, 34. [Google Scholar] [CrossRef]
- Sulis, E.; Tambuscio, M. Simulation of Misinformation Spreading Processes in Social Networks: An Application with NetLogo. In Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, NSW, Australia, 6–9 October 2020; pp. 614–618. [Google Scholar]
- Tsai, W. Knowledge Transfer in Intraorganizational Networks: Effects of Network Position and Absorptive Capacity on Business Unit Innovation and Performance. Acad. Manag. J. 2001, 44, 996–1004. [Google Scholar] [CrossRef]
- McInerney, C. Knowledge Management and the Dynamic Nature of Knowledge. J. Am. Soc. Inf. Sci. Technol. 2002, 53, 1009–1018. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, X.; Zhang, W. A Two-Stage Consensus Method for Large-Scale Multi-Attribute Group Decision Making with an Application to Earthquake Shelter Selection. Comput. Ind. Eng. 2018, 116, 113–129. [Google Scholar] [CrossRef]
Level | Opinion | Distance | Consensus |
---|---|---|---|
Micro | Agent to agent : Agent to cluster : | Agent to cluster : | |
Meso | - | ||
Macro | - |
Condition | Case | Subcase | Influence from | Opinion Update for Agent |
---|---|---|---|---|
- | all agents | |||
The agent , specified as: | ||||
The agent , specified as: | ||||
A hypothetical agent , defined as: with |
Issue | Recommendation | Preliminary or Indicative Approaches |
---|---|---|
Dearth of socioeconomic applications in the GDM and KD categories. | Exploration of collaborative aspects of socioeconomic reality. | Chao et al. (2021a) [95] Chao et al. (2021b) [96] Schweitzer at al. (2022) [121] |
Exploration of knowledge transfer phenomena between financially oriented agents. | Vaccario et al. (2018) [122] Sankar et al. (2020) [108] Shi et al. (2020) [109] | |
Lack of empirical validation. | Incorporation of available datasets for the calibration and testing of ABM sociophysical models. | Schweitzer et al. (2022) [121] Vaccario et al. (2018) [122] |
Misalignment between Sociophysics and social reality. | Emphasis on agent-structure co-evolution. | DeLellis et al. (2017) [77] DeLellis et al. (2018) [76] Ioannidis et al. (2020) [79] Ioannidis et al. (2021) [107] Antoniou et al. (2022) [116] |
Depiction of micro, meso and macro-level influence on agents’ actions and vice-versa. | Zubillaga et al. (2022) [69] Li et al. (2022) [90] | |
Incorporation of the element of conscious selection and interaction. | Panchenko et al. (2013) [67] Ioannidis et al. (2018a) [105] Ioannidis et al. (2018b) [106] Ioannidis et al. (2021) [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsintsaris, D.; Tsompanoglou, M.; Ioannidis, E. Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business. Mathematics 2024, 12, 1141. https://doi.org/10.3390/math12081141
Tsintsaris D, Tsompanoglou M, Ioannidis E. Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business. Mathematics. 2024; 12(8):1141. https://doi.org/10.3390/math12081141
Chicago/Turabian StyleTsintsaris, Dimitris, Milan Tsompanoglou, and Evangelos Ioannidis. 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business" Mathematics 12, no. 8: 1141. https://doi.org/10.3390/math12081141
APA StyleTsintsaris, D., Tsompanoglou, M., & Ioannidis, E. (2024). Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business. Mathematics, 12(8), 1141. https://doi.org/10.3390/math12081141