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Abstract: In this paper we offer a comprehensive review of Sociophysics, focusing on relevant models
as well as selected applications in social trading, behavioral finance and business. We discuss three
key aspects of social diffusion dynamics, namely Opinion Dynamics (OD), Group Decision-Making
(GDM) and Knowledge Dynamics (KD). In the OD case, we highlight special classes of social agents,
such as informed agents, contrarians and extremists. As regards GDM, we present state-of-the-art
models on various kinds of decision-making processes. In the KD case, we discuss processes of
knowledge diffusion and creation via the presence of self-innovating agents. The primary question
we wish to address is: to what extent does Sociophysics correspond to social reality? For that
purpose, for each social diffusion model category, we present notable Sociophysics applications for
real-world socioeconomic phenomena and, additionally, we provide a much-needed critique of the
existing Sociophysics literature, so as to raise awareness of certain issues that currently undermine the
effective application of Sociophysics, mainly in terms of modelling assumptions and mathematical
formulation, on the investigation of key social processes.
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1. Overview of Sociophysics

Two-and-a-half millennia ago, Greek philosopher Democritus posited the existence of
“atoms”, tiny indivisible material components, anticipating the emergence of the atomic
theory in the 19th century. In ancient and modern forms of the Greek language, the term
“atom” (ἄτoµoν) is interpreted as “indivisible, uncut”. The very same etymology is applied
to the modern English term “individual” (derived from the Latin term individuus, again
meaning indivisible), denoting a person. Moreover, in Modern Greek the term άτoµo can
be used interchangeably, either with a natural or a social connotation.

In a sense, the use of the same term to characterize two fundamentally different
concepts (one referring to an inanimate object and the other to a living entity) might
seem paradoxical, particularly under the scope of the Enlightenment notion of man as an
essentially free creature, unconstrained by the influence of necessity expressed in universal
natural laws. However, from the 17th century onwards, thinkers like Thomas Hobbes (1588–
1679), David Hume (1711–1776), Henri de Saint-Simon (1760–1825) and others expressed
a somewhat strange hope that the social sphere would someday become the domain of a
new positive science. The idea of “social physics” appears in explicit form in the work of
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French philosopher August Comte (1798–1857), who postulated the existence of objective,
unchanging laws regulating the collective behavior of social groups [1]. This idea really
acquired traction only in the last quarter of the 20th century with the emergence of concepts
like complex systems, self-organization and chaos. Săvoiu and Iorga Simăn [2] aptly define
Sociophysics as follows: “Sociophysics can be described as the sum of activities of searching
for fundamental laws and principles that characterize human behavior and result in collective
social phenomena.”

Before and after the term “Sociophysics” emerged, various quantitative studies pre-
sented impressive and often counter-intuitive findings on social phenomena, such as racial
segregation [3], opinion polarization [4,5], social imitation [6], workers’ strike processes [7],
alliance formation [8] and cultural dissemination [9]. In this context, the behavior of
individuals has been implicitly or explicitly compared to that of atoms or molecules float-
ing in a medium, with patterns of repellence and attraction depending on their inherent
attributes [10]. Accordingly, Agent-Based Modelling (ABM), Social Network Analysis
(SNA) [11] and Network Science in general have been naturally integral to the Sociophysics
discipline [12]. Therefore, the underlying principle of Sociophysics is the proposal that
relatively simple rules defining the behavior of interacting individuals/agents (micro level)
lead to the emergence of a very complex social structure (macro level).

Three of the most promising instantiations of Sociophysics research are Opinion Dy-
namics (OD), Group Decision Making (GDM) and Knowledge Dynamics (KD). OD, GDM
and KD, through the application of ABM and SNA principles, describe how opinion (in the
form of ideas, cultural norms, memes, etc.), consensus (i.e., a commonly accepted outlook
on how to act) and knowledge (e.g., true information, innovations, empirically justified
truths, etc.) are respectively diffused in various social networked environments. In the 21st
century information society [13], one of the most prominent and impactful social spaces
is the one constituted by the interactions between financial agents (e.g., entrepreneurs,
firms, traders, etc.). Econophysics [14,15], the economics-based sub-category of Socio-
physics, models the behavior of a not-so-rational homo oeconomicus and the influence that
interactions between financial agents have on the determination of asset prices.

Taking the former thoroughly into account, three central questions on the field of
Sociophysics and its application in the real social world emerge, namely the following:

Q1: what are the most important proposed Sociophysics models in the domains of OD, GDM
and KD and in what way does each one of them aim to mathematically represent the occurrence of
social interaction between agents and the emerging socioeconomic phenomena?

Q2: in what forms “bridges” between theoretical Sociophysics models and real-world appli-
cations in the domain of Economics and related subdomains such as Social Trading, Behavioral
Finance and Business are erected?

Q3: given the great importance of Sociophysics, in what ways—known and unknown—does
the field fail to accurately capture the inner workings of social reality?

This review paper aims to provide answers to the above three questions. We believe
that our adoption of a wide-ranging scope, taking good care to clarify the distinctions
between different categories of social diffusion, and mainly our concurrent attempt to
showcase both the advantages (evident in real-world socioeconomic applications) and
shortcomings of the Sociophysics field (e.g., misalignment between Sociophysics modelling
assumptions and social reality) form a “big picture” that an analysis focused only on partic-
ular aspects of Sociophysics may miss. We believe that current analyses on Sociophysics
fail to capture in toto the current status of the discipline, its successes and mainly its more
elusive shortcomings, especially as regards its ontological distinction from Physics and the
related current inadequacies in the correspondence between Sociophysics and social reality.
We naturally wish to cover this particular gap by offering a critical view on Sociophysics
and its applications.

Accordingly, this review has the following structure: Firstly, the existing literature
on diffusion dynamics in social networks is comprehensively discussed. Therefore, im-
portant studies, models and selected applications in OD (Section 2), GDM (Section 3) and
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KD (Section 4) are presented (Q1) and for each model category certain noteworthy ap-
plications in Economics and related subfields are highlighted (Q2). Secondly, a critical
evaluation of the existing relevant literature (Q3) is conducted (Section 5), so as to investi-
gate how Sociophysics could further enhance its social relevance and solidify its status as
a mathematics-based applied social science, whose findings may provide crucial insights on
various aspects of social reality.

2. Opinion Dynamics (OD)
2.1. Linear Models

Over the previous decades, a growing body of literature on OD has offered mathemati-
cal model formulations simulating how opinion is diffused across social networks. A social
network consists of N agents interacting through a set of connections/links [11]. In the
simplest case (undirected network), between two communicating agents i and j there exists
a single link with an influence weight wij.

The earlier approaches (from the 1950s to the 1990s) on OD are predominantly linear
in nature [16–22], in the sense that communication patterns and interaction structure
remains fixed. Among these, of special importance are the DeGroot model [18,22] and the
Friedkin-Jensen model (FJ) [20,21].

In the DeGroot model the evolution of the opinion of agent i, usually taking values in
the interval [0, 1], is given as a linear combination (in particular a weighted average, since
N
∑

j=1
wij = 1) of the opinions of all other communicating agents:

oi(t + 1) =
N

∑
j=1

wijoj(t). (1)

Hence, the opinion vector O for all agents at time step t+ 1 will be updated accordingly:
O(t + 1) = W·O(t). Thus, the opinion vector at a later time step τ is of the form: O(t + τ) =
Wτ ·O(t). According to [18], if at least one column of matrix Wτ contains only positive
elements, then consensus is eventually attainable.

The FJ model is a variant of the DeGroot model, in the sense that it takes into account
agent i’s stubbornness, si, i.e., the tendency to adhere to his initial opinion. The degree of
influence from the other agents is set at 1 − si. Opinion evolution can be written as:

oi(t + 1) = sioi(0) + (1 − si)
N

∑
j=1

wijoj(t). (2)

The above formula can be expressed in matrix form as O(t+ 1) = S·O(0)+ (I −S)·W·O(t),
where Sis a N × N diagonal matrix containing the elements si. In contrast to the DeGroot model,
the regularity of matrix Wτ does not necessarily entail convergence. Consensus is conditional on
the stubbornness level of the agents.

2.2. Non-Linear Models

A rising number of non-linear approaches have also made their appearance in the liter-
ature. Non-linearity may emerge when influence weights and/or specific communication
interactions are conditioned on agent opinions in previous time steps.

Non-linear models can be divided into three main categories: continuous, discrete and
mixed. In continuous models, the opinion of the agents can take any value in a particular
interval, e.g., [0, 1] or [−1, 1]. In discrete models, the opinion of the agents can take only
specific values, mostly of binary form (e.g., 0/1, yes/no, support/opposition, buy/sell).
Finally, in mixed models, the continuous opinions of the agents are expressed as discrete
choices. For all the above cases, there are also multi-dimensional (vector) representations
of agent opinions [23,24].
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2.2.1. Continuous Models

Among the non-linear continuous models found in the OD literature, the most promi-
nent ones belong to the Bounded Confidence class of models [25–27]. Bounded Confidence
models operate under the assumption that social influence is possible only when the opin-
ions oi(t) and oj(t) of two neighboring agents i and j are sufficiently close, below a certain
tolerance threshold ε: ∣∣oj(t)− oi(t)

∣∣ < ε. (3)

The most well-known Bounded Confidence models are the Hegselmann-Krause (HK)
model [28–30] and the Deffuant-Weisbuch (DW) model [31–33]. Their primary distinction lies
in the communication assumption employed in each case: in the HK model, each agent
communicates simultaneously with all sufficiently like-minded neighbors, while in the DW
model communication is realized between two random like-minded neighbors at a time.

Hence, in the HK model, the opinion of agent i evolves in the following manner:

oi(t + 1) =
1∣∣Sε
i

∣∣ ∑
j∈Sε

i

oj(t), (4)

where Sε
i =

{
j :
∣∣oj(t)− oi(t)

∣∣ < ε
}

is the set containing those neighbors j of agent i with a
sufficiently close opinion to his own.

On the other hand, in the DW model, when two agents communicate and condition
(3) is satisfied, a mutual opinion update takes place in the following fashion:

oi(t + 1) = oi(t) + µ
(
oj(t)− oi(t)

)
,

oj(t + 1) = oj(t) + µ
(
oi(t)− oj(t)

)
,

(5)

with µ a parameter determining the rate of convergence between agents i and j. When the
tolerance threshold ε is high enough, widespread opinion convergence is possible, whereas
when ε is low, opinion clustering among groups of agents is observed.

2.2.2. Mixed Models

Sophisticated mixed models, such as the continuous opinion and discrete actions (CODA)
model [34–36] have also been developed. In the prominent CODA model, an agent i
internalizes his preference at time step t in the form of a continuous probability pi(t) and
expresses to other agents his quantized binary opinion oi(t) = sign(pi(t)− 0.5 ), taking
values −1 or 1. Whenever an agent i is influenced by an agent j, his internalized preference,
expressed in log-odds form as ui(t) = log

(
pi(t)

1−pi(t)

)
, shifts to ui(t + 1) = ui(t) ± ai =

ui(t) + oj(t)ai with ai the susceptibility parameter of agent i to the opinion oj(t) of his
neighbor j. Consequently, pi(t + 1) ̸= pi(t) and thus it is probable that, under the influence
of his neighbor, agent i will change his professed opinion oi(t + 1) ̸= oi(t). In this manner,
opinion diffusion can take place.

2.2.3. Discrete Models

As regards discrete OD modelling, much attention has been given to the voter model [37,38],
the Sznajd model [39–42] and the majority rule model [43–46].

In the voter, model agents are placed in a square lattice. Agent opinion oi(t) is of
strictly binary type, i.e., 0 or 1. At each time step, an agent i will randomly adopt the
opinion oj(t) of a neighbor j, i.e., oi(t + 1) = oj(t).

In the Sznajd model, agents are placed on a line. At each step, a pair of neighboring
agents i and i + 1 is randomly selected. If their opinions are identical, then the adjacent
agents i − 1 and i + 2 will be jointly influenced as follows: oi−1(t + 1) = oi+2(t + 1) =
oi+1(t) = oi(t). On the other hand, if their opinions differ, then each agent will influence
only his other neighbor, i.e., oi−1(t + 1) = oi(t) and oi+2(t + 1) = oi+1(t).



Mathematics 2024, 12, 1141 5 of 27

The majority rule model concerns voting at different hierarchical levels. In the simplest
case, at each hierarchical level the population is randomly clustered in groups of three
agents. In each group, the three members vote between two candidates (type A or type
B). The voting result at hierarchical level 1 influences the composition of the population
at level 2. After clustering in groups of three at level 2, the same process is to be repeated
until vote convergence is observed. The probability for a type A candidate to be elected at
level n + 1 is as follows:

pA(n + 1) = p3
A(n) + 3p2

A(n)(1 − pA(n)), (6)

where pA(n) is the probability that a type A candidate was elected at level n.
It can be shown that when pA(0) < 1

2 , the probability sequence pA(n) converges to
zero. Hence, the existence of A is eliminated. On the other hand, when pA(0) > 1

2 , the
sequence converges to 1 and the prevalence of A is certain. The key finding is that, although
the electoral process operates in a fully democratic manner, the condition pA(0) > pB(0)
(or the reverse) is sufficient for a “totalitarian” result to eventually emerge. One of the
two political positions (A or B) will be all but excluded, regardless of the amount of initial
support for B or A.

Counter-intuitive findings, as the above, demonstrate the usefulness of Sociophysics
for the disclosure of well-hidden “holes” in seemingly robust social or political processes
that qualitative studies are often unable to detect. Certain “bottom-up” multi-stage electoral
systems like the ones found in socialist or even liberal democratic states (e.g., the US
presidential electoral system) operate in a manner which bears certain similarities to the
one proposed in the majority rule model.

2.3. Special Classes of Social Agents

Certain continuous OD models focus on the impact of special classes of social agents
on the opinion diffusion process in the network. Such agents operate in a particular manner
that distinguish them from other agents they interact with. These special categories of
agents (informed, contrarian and extremist) are discussed below.

2.3.1. Informed Agents

It has been noted that apart from the existence of key opinion leaders or influentials who
spread their opinions to the rest of the population [47–50], the presence of a «critical mass
of easily influenced individuals» is also essential for effective social influence [51]. From
this critical mass a cascading effect begins, leading to widespread social influence.

Along these lines, a large segment of the available literature on OD focuses on the impact
of informed agents, i.e., individuals with hidden agendas who act as secret advertisers of ideas
and norms to the rest of the population. Prominent studies on informed agents [52,53] are
grounded on findings derived from studies on animal population dynamics [54,55], suggesting
that the collective behavior of social groups can be guided by a small fraction of purposeful
agents.

For example, in [52], taking into account the bounded confidence assumption (3),
opinion diffusion from regular agent j to regular agent i is realized as follows: oi(t + 1) =
wii(t)oi(t) + wji(t)oj(t), where wji(t) denotes the interpersonal social influence of agent
j on agent i and wii(t) denotes the tendency of agent i to adhere to his opinion at time t.
However, for an informed agent κ, a third parameter, wg

κ(t ), indicating hidden devotion to
the pursuance of a pre-specified goal og is added. Therefore, opinion diffusion from regular
agent λ to informed agent κ is realized as follows:

oκ(t + 1) = wκκ(t)oκ(t) + wλκ(t)oλ(t) + wg
κ(t)og. (7)

In the general case, an informed agent may also become influenced by other agents.
Still, the presence of an unchanging pre-set goal makes possible to steer public opinion
using only a small set of informed agents in the social network, especially when these
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are well-connected individuals. Note that informed agents are not necessarily prominent
members of society.

An even more fleshed out approach on the processes of social change induced by
informed agents, or rather change agents, has been presented in [56]. Change agents mimic
the opinions of their neighbors and, at the same time, attempt to divert them towards a
preferred direction. They gradually shift their neighbors’ opinions towards a pre-set goal,
so as to commence a cascading diffusion of social influence. Therefore, the strategy of
“salami slicing” is incorporated into the opinion diffusion equation of a change agent.

Whereas opinion diffusion for regular agents is of a form similar to other DW-derived
implementations, for a change agent κ, opinion update operates in the following manner:

oκ(t + 1) = oout
κ (t) + sκ(t)

(
og − oout

κ (t)
)
, (8)

where oout
κ (t) = 1

|S+
κ | ∑

λ∈S+
κ

oλ(t) is the average opinion of all out-neighbors of κ to whom

agent κ is connected with a positive outgoing (directed) link weight wκ→λ. This set is
denoted by S+

κ = {λ : wκλ = wκ→λ > 0}. Additionally, sκ(t) is a time-dependent slicing
parameter lying in the interval [0, 1], indicating “thin” (gradual) shift of the change agent’s
professed opinion. In this way, the change agent κ is able to induce opinion change to
his out-neighbors, whose average opinion oout

κ (t) is incorporated in the change agent’s
public stance.

2.3.2. Contrarian Agents

Contrarians are agents who tend to disagree with the majority. According to [57], one
way to model the influence of contrarians is to simply refine the majority rule model found
in [43–45]. Contrarian agents are presumed to be found in the general population with a
density a. In this way, they might induce a shift in electoral outcomes of lower-level groups.
Therefore, (6) is modified accordingly:

pA(t + 1) = (1 − a)
[

p3
A(t) + 3p2

A(t)(1 − pA(t))
]
+ a
[

p3
B(t) + 3p2

B(t)(1 − pB(t))
]
, (9)

where pA(n) and pB(n) are the probabilities that a candidate of type A or B is elected at
level n.

A positive outcome of the presence of contrarian agents is that the totalitarian outcome
of the majority rule model is averted for small values of a. For example, a = 0.1 leads to
opinion convergence of the form 0.85 to 0.15 in favor of outcome A, not 1 to 0.

2.3.3. Extremist Agents

Extremists are agents whose opinion lies on the edges of the opinion interval [58–61].
For example, if agent opinions take values in the interval [−1, 1], then agent opinion for an
extremist agent takes values very close or equal to 1 or −1.

In [59], it is proposed that if extremist agents are present in a social network, their
extremist views can eventually become widely accepted, provided that there exists opinion
uncertainty among regular agents. Uncertainty is modeled assuming the existence of
opinion segments si = [oi − ui, oi + ui ], where oi indicates opinion and ui uncertainty.
The segment overlap hji between two agents i and j is: hji = min

(
oj + uj, oi + ui

)
−

max
(
oj − uj, oi − ui

)
, whereas the non-overlapping part is 2uj − hji.
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Subtraction of the two quantities divided by uj gives the relative agreement term
hji
uj

− 1. Hence, on the condition that hji > uj, opinion diffusion from an agent j to a

neighbor agent i is possible and the DW Equation (5) for agent i take the form:

oi(t + 1) = oi(t) + µ·
(

hji(t)
uj(t)

− 1

)(
oj(t)− oi(t)

)
,

ui(t + 1) = ui(t) + µ·
(

hji(t)
uj(t)

− 1

)(
uj(t)− ui(t)

)
,

(10)

where µ is a convergence parameter determining the speed of the diffusion process.
Due to the fact that an extremist agent j has narrower opinion uncertainty uj than

a regular agent, the condition hji > uj is usually fulfilled when regular agents interact
with extremists. Hence, diffusion and, in some cases, prevalence of extremist opinions
becomes possible.

2.4. Applications in Behavioral Finance/Social Trading

One of the most fruitful applications of OD is in the field of behavioral finance/social
trading [62]. The application of OD in finance, aiming to model the behavior of financial
social agents, has a rather strong empirical foundation due to the existence of sociological
studies [63,64], suggesting that price formation is partially dependent on the social influence
that financial agents (firms, traders, entrepreneurs, investors, finfluencers, etc.) exert on
each other.

Financial agents act semi-rationally at best and, due to their unavoidable social embed-
dedness, they are heavily influenced by the preferences of their peers. Personal bias also
seems to have a rather strong impact on individual behavior. Thus, it seems that financial
agents do not always follow a rationalist modus operandi; behavioral short-termism is
common [65]. However, despite their bounded rationality [66], agent behavior can still
be mathematically modeled and simulated via the appropriate application of ABM prin-
ciples. This is one of the most important benefits of the Sociophysics approach and its
economics-oriented sub-field, Econophysics.

2.4.1. Discrete Models

Certain discrete OD models applied on behavioral finance are based on previous
studies from the field. One notable example is found in [67], where a generalized version of
the financial Brock-Hommes model [68], which assumes that all investors interact with each
other, is applied on several different network topologies.

In [67], the opinion (investment behavior) of agent i at time t + 1 shifts according to
the opinions of his neighbors on previous time t. The opinion oi(t) of agent i is binary with
0 indicating a “fundamentalist” behavior and 1 indicating a “chartist” behavior. A chartist
is an investor who evaluates assets based on a technical analysis of historical price trends.
The basic assumption is that all necessary information is already incorporated into the
current price. A fundamentalist is an investor who evaluates assets based on α fundamental
analysis. The goal of a fundamentalist is to determine whether an asset is overvalued,
undervalued or fairly valued by the market, and then make investment decisions based on
this analysis.

The probability pc
i (t + 1) that agent i will be of the chartist type at time t + 1 is

as follows:

pc
i (t + 1) = oi(t)

(
∏
j∈Si

oj(t)

)
+

[
oi(t)

(
1 − ∏

j∈Si

oj(t)

)
+ (1 − oi(t))

(
1 − ∏

j∈Si

(
1 − oj(t)

)) ]
Pc> f

β (t + 1).
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The above formula can be summarized as follows:

pc
i (t + 1) =


1 when oi(t) = 1 and oj(t) = 1 ∀j ∈ Si
0 when oi(t) = 0 and oj(t) = 0 ∀j ∈ Si

Pc> f
β (t + 1) otherwise

(11)

where Si is the set of neighbors of agent i, and Pc> f
β (t + 1) is a logistic probability indicating

the extent that the chartist position is preferable over the fundamentalist one:

Pc> f
β (t + 1) =

1

1 + eβ[U f (t+1)−Uc(t+1)]
(12)

Here, β is a parameter indicating intensity of choice due to idiosyncratic preferences and
personality biases and U f (t + 1), Uc(t + 1) are utility indices resulting from a fundamen-
talist (f) or chartist (c) position, respectively, taking into account the asset performance in
previous time steps.

According to (11), pc
i (t + 1) = 1 when all neighbors j ∈ Si of agent i and i himself are

of the chartist type, and pc
i (t + 1) = 0 when all neighbors j ∈ Si and i himself are of the

fundamentalist type. When the opinions of neighbors are not all of the same type, then the
probability that agent i is of the chartist type is: pc

i (t + 1) = Pc> f
β (t + 1).

In an another relevant study [69], a three-state probabilistic OD model is proposed
in which opinion represents available options (buy, sell or do nothing) forming the set
s = {1, 2, 3}. Agents are split into two categories, noise “traders” and noise “contrarians”.
Noise traders tend to align with the local majority of their neighbors. Noise contrarians
take into account all agents (not only their neighbors) and tend to adopt the opinion
of the minority. The status of each agent (trader or contrarian) is unchanging in time.
The probability that an agent (trader or contrarian) will not follow the above-described
behavior is p. For example, assuming that the local majority of a noise trader at time t
prefers the “buy” option (1), the probabilities at time t + 1 are as follows:

P
(

otrader
i (t + 1) = 1

∣∣∣(N1
i > N2

i

)
∧
(

N1
i > N3

i

))
= 1 − p,

P
(

otrader
i (t + 1) = 2

∣∣∣(N1
i > N2

i

)
∧
(

N1
i > N3

i

))
=

p
2

,

P
(

otrader
i (t + 1) = 3

∣∣∣(N1
i > N2

i

)
∧
(

N1
i > N3

i

))
=

p
2

,

(13)

where

N1
i =

∣∣{j : j ∈ Si with oj(t) = 1
}∣∣,N2

i =
∣∣{j : j ∈ Si with oj(t) = 2

}∣∣, N3
i =

∣∣{j : j ∈ Si with oj(t) = 3
}∣∣, (14)

the number of neighbors of agent i having the corresponding states 1, 2 and 3. Due to its
probabilistic character, the model is of a similar nature to other similar approaches on the
majority rule model [70–73], first described in Section 2.2.3.

2.4.2. Continuous Models

As regards asset price dynamics, opinion (investment behavior) may take continuous
values. For example, in [74] the expectation of agent i about the future price of an asset is
influenced by the opinion of all other N agents, including himself:

Ei(t) =
N

∑
j=1

wijoj(t). (15)

The above linear formula is similar to the DeGroot opinion update in (1). Each agent
invests a relative amount of wealth wi(t) equal to the product of his price expectation
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Ei(t) with his capital ratio ci(t), denoting the capital share of agent i over the total capital
invested in this specific asset. The asset price at time t is defined as:

v(t) =
N

∑
i=1

wi(t) =
N

∑
i=1

Ei(t)ci(t). (16)

The opinion of agent i about the future asset price is a function of the price v(t) in the
previous mi time steps, i.e., oi(t + 1) = f (v(t), v(t − 1), . . . ., v(t − mi)).

Non-linear formulations have also been proposed. In a notable recent study [75], the
OD Equation (5) is used for the description of asset price dynamics. The excess demand
Dµ(t) for an asset µ is defined as the sum of the distances between the opinion oµ

i (t) ∈ [0, 1]
of agent i about the price of asset µ and its normalized price pµ(t) ∈ [0, 1]. The normalized
price is defined as pµ(t) = pµ(t)

∑
ξ

pξ (t) , where pµ(t) is the price of asset µ. Hence, the excess

demand is Dµ(t) = |ε|∑
i

(
oµ

i (t)−pµ(t)
)

, where ε ∼ N(0, σ) is a random noise element

having a “quenching” influence on excess demand. Accordingly, price dynamics can be
described in the following manner:

pµ(t + 1) =


1 i f pµ(t) + Dµ(t) > 1

pµ(t) + Dµ(t) i f pµ(t) + Dµ(t) ∈ [0, 1]
0 i f pµ(t) + Dµ(t) < 0

. (17)

In [76,77], another non-linear model is developed, in which network structure is
considered to be evolving in time. Each agent i is characterized by the following two
attributes: his opinion oi(t) representing his attitude on risk-taking and his reputation ri(t)
as an investor among his peers. The reputation ri(t) depends on his wealth wi(t) and his
charisma ci, as follows: ri(t) = (1 − h)wi(t) + hci, with h ∈ [0, 1] a coefficient indicating
irrationality. Wealth evolution is dependent on his previous wealth level wi(t) and his
risk-taking attitude oi(t) as follows: wi(t + 1) = f (wi(t), oi(t)). Opinion update, bearing
similarities to both the HK (4) and the FJ model (2), is written as

oi(t + 1) =

sioi(0) + (1 − si)
1

|Si(t)| ∑
j∈Si(t)

oj(t), |Si(t)| > 0

oi(0), |Si(t)| = 0
(18)

where si is the stubbornness of agent i and Si(t) =
{

j : aji(t) = 1
}

is the set of neigh-
bors j of agent i at time t, with aji(t) the corresponding time-dependent element of the
adjacency matrix:

aji(t) =
{

1, σji(t) > 0.5
0, elsewhere

(19)

where σji(t) is the activation function, determining whether the corresponding link aji(t) be-
comes activated or deactivated. The dynamics of σji(t) depend on the reputation difference
rj(t)− ri(t) between agents j and i, as follows:

φ

(
d2σji

dt2 ,
dσji

dt
, σji(t)

)
= (−1)aji(t)max

{
0, (−1)aji(t)

(
rj(t)− ri(t)

)}
. (20)

The reputation difference rj(t)− ri(t) is analogous to the opinion difference found in
(3), used in the original HK model and other non-linear models. However, contrary to the
original HK model, network structure evolves due to the presence of a co-evolution mecha-
nism [78–80]. Specifically, the reputation of an agent increases due to wealth accumulation.
This leads to shifts in network structure through the activation or deactivation of specific
network links. This has an immediate effect on the formation of the opinions of the agents,
which, in turn, influences wealth accumulation for each agent and so on.
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Note that the formulation presented above aims to incorporate both: (a) the rational
aspect of social influence, i.e., wealth wi(t), considered to be the “hard power” element
in the model, and (b) the irrational aspect of social influence, i.e., charisma ci, considered
to be the “soft power” element, indicating the psychological tendency to be influenced by
those who possess social status.

3. Group Decision Making (GDM)

In the field of Sociophysics, Group Decision Making (GDM) in a social network usually
takes place between multiple collaborating agents of often diverse backgrounds, ideas,
knowledge and authority, each having a different opinion on a specific subject [81–84]. Thus,
GDM implies the existence of collective efforts aiming for the achievement of consensus in
a non-competitive setting on the part of all network agents, all consciously committed in
the decision-making process.

On the other hand, OD primarily focuses on processes of undeliberate shift in percep-
tions, with maybe only a minority of agents intently aiming for the promotion of specific
desired opinions and ideas (e.g., informed/change agents) to unaware regular agents.
In OD, even if consensus appears, in the form of opinion uniformity, as a macroscopic
emergent phenomenon, this does not necessarily imply intentionality and commitment
to the attainment of consensus on the part of the agents, as in the GDM case. Even if
each agent is assumed to purposefully select whom they will interact with, according
to specific selection criteria, pursuance of purpose remains, at most, an individual, not
collective, endeavor. Thus, consensus in OD, when it emerges, is merely a byproduct of
interactions. What might interest the researcher is the eventual opinion distribution (steady
state) among the agents, i.e., uniformity, polarization or fragmentation of opinion. On the
contrary, consensus in GDM is what is actively sought after. Here, what matters is the
achievement of an eventual collective and negotiated opinion value and the conditions for
its implementation. Note that in OD such equations referring to some steady state (such
as (23) and (31), below), are naturally absent, since opinion diffusion is a “purpose-free”
process, which, as noted above, does not entail collective pursuance of purpose from the
part of the agents.

However, despite their heavy contextual differences, heavy influence from OD to GDM
in terms of methodology and mathematical formulation is nearly inevitable due to the fact
that both involve the promotion of personal views. Thus, OD models are related to GDM
models but only in terms of similar social diffusion equations. More specifically, an OD
model can be converted to a GDM model if the element of consensus pursuance is added
into the existing model architecture leading to further mathematical elaboration. Note that
for this reason the distinction between OD and GDM may not be directly perceivable when
looking only at certain parts of the mathematical formulation. Thus, the difference in the
social context of interaction is not immediately apparent from the social diffusion equations
used, which are, after all, frequently used in similar or identical form in GDM as well
as OD. Nonetheless, the collaborative aspect of GDM is still apparent as it emerges from
the way a proposed GDM model operates in its totality, taking into account all equations
describing its modus operandi. This collaborative aspect is, of course, directly enforced by
the developer of the model.

In order to showcase the distinctive features of GDM, prominent examples from the
available literature are presented and discussed below.

3.1. Decision Making via Agent-to-Agent Influence

A significant number of GDM models [85–87] incorporate an agent-to-agent interaction
mechanism for decision making. A notable model is the one found in [84], in which the
bounded confidence assumption in (3) is adopted, although certain distinguishing elements
are present.
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The opinion oi(t) of agent i is taking values in the interval [0, 1]. Each pair of
agents i and j is influenced by each other, depending on their opinion distance dij(t) =∣∣oi(t)− oj(t)

∣∣, which takes values in [0, 1]. Three separate cases are distinguished:

• When dij(t) < φ, the agents are deemed to be in agreement and therefore there is no
further need to influence each other.

• When dij(t) ∈ [φ, ε), with consensus threshold φ ∈ [0, ε], the agents continue to
influence each other and they have to compromise. Only in this case opinion update
for both agents takes place.

• When dij(t) ≥ ε, with confidence threshold ε ∈ [0, 1], no influence takes place between
the agents as they belong to a separate opinion cluster.

For an agent i at each time step t the set Si =
{

j : dij(t) ∈ [φ, ε)
}

is determined. This
set contains all agents j that agent i has to negotiate with. Among these agents, a particular
agent κ is selected for interaction if diκ(t) = max

j∈Si

{
dij(t)

}
. Resembling the DW formulation

in (5), between agents i and κ, opinion diffusion operates in the following manner:

oi(t + 1) = µi(t)oi(t) + (1 − µi(t))oκ(t),

oκ(t + 1) = µκ(t)oκ(t) + (1 − µκ(t))oi(t),
(21)

where µi(t), µκ(t) ∈ [0, 1] are the time-dependent convergence parameters of agents i
and κ:

µi(t) = 1 − DEGκ(t)
(DEGi(t) + DEGκ(t))·si

,

µκ(t) = 1 − DEGi(t)
(DEGi(t) + DEGκ(t))·sκ

(22)

The degree centrality of agent i, indicating his credibility, is denoted by DEGi(t).
The reasoning for this, is the argument that the more one is followed, the more his opinion
tends to be respected. Additionally, si and sk, are constants indicating stubbornness, taking
values equal to 2, 3 or 4.

At time step teq the network reaches an equilibrium as all opinion distances belong
to the interval ∆ = [0, φ) ∪ [ε, 1]. This means that Si = ∅, for all agents i. The final
aggregated opinion Oeq is calculated as the weighted average of all final agent opinions
giving the solution to the GDM problem:

Oeq =
∑N

i=1 oi
(
teq
)
·DEGi

(
teq
)

∑N
i=1 DEGi

(
teq
) . (23)

3.2. Decision Making via Clustering

When the population of the interacting agents is large, usually greater than 11 agents [88]
or more [89,90], decision making can be realized in clusters of agents. For example, in [90],
the agents are placed in Z distinct clusters Gz, z = 1, . . . , Z with populations of |Gz| agents.
Each agent i has its own confidence threshold εi. All agents are faced with a set of m
decision alternatives, namely: X = {x1, x2, . . . , xm}. Each alternative xp has n attributes, i.e.,

xp =
[
a1

p, a2
p, . . . , an

p

]
. Attributes are split into two categories: (a) benefit attributes and (b)

cost attributes. It is desirable that benefit attributes take high values while cost attributes take
low values.

The opinion of agent i on the attribute aq
p of the alternative xp is denoted as op(q)

i (t),
taking values in the interval [0, 1]. Therefore, the agent i of cluster Gγ is characterized

by the opinion matrix Oi[γ](t) =
[
op(q)

i[γ] (t)
]

m×n
and his prestige/reputation ri[γ] =

ωi
∑

j∈Gγ

ω j
,

where ωi is the mean value of two centralities, degree and closeness. The (relative) pres-
tige/reputation of cluster Gγ is as follows:
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rγ =
|Gγ|2

∑Z
z=1

(
|Gz|2

) . (24)

Due to the presence of a clustering mechanism, consensus is gradually formed in hier-
archical levels of interaction (micro-, meso- and macro-). The mathematical formulations
for each level are summarized in Table 1. Consensus has to be first implemented in the clus-

ter (meso) level. The opinion matrix of the cluster Gγ is O[γ](t) = ∑
|Gγ |
i=1

[
ri[γ]·Oi[γ](t)

]
=[

op(q)
[γ]

(t)
]

m×n
. The difference between the opinion matrix Oi[γ](t) of agent i and the opinion

matrix O[γ](t) of the cluster Gγ to which agent i belongs, is calculated via the Manhat-
tan distance:

di[γ] = d
(

Oi[γ](t), O[γ](t)
)
=

1
mn

m

∑
p=1

n

∑
q=1

∣∣∣op(q)
i[γ] (t)− op(q)

[γ]
(t)
∣∣∣. (25)

Table 1. Mathematical Formulation of Opinion, Distance and Consensus at different hierarchical
levels of interaction.

Level Opinion Distance Consensus

Micro Oi[γ](t) =
[
op(q)

i[γ] (t)
]

m×n

Agent i to agent j:
dij[γ] = d

(
Oj[γ](t), Oi[γ](t)

)
Agent i to cluster Gγ:

di[γ] = d
(

Oi[γ](t), O[γ](t)
)

Agent i to cluster Gγ:

C
(

Oi[γ](t)
)
= 1 − d

(
Oi[γ](t), O[γ](t)

)

Meso O[γ](t) =
|Gγ |
∑
i=1

[
ri[γ]·Oi[γ](t)

]
=
[
op(q)
[γ]

(t)
]

m×n
- C

(
O[γ](t)

)
=

|Gγ |
∑
i=1

[
ri[γ]·C

(
Oi[γ](t)

)]
Macro O(t) =

Z
∑

z=1
rzO[z](t) =

[
op(q)(t)

]
m×n

- C(O(t)) =
Z
∑

z=1
rz·C

(
O[z](t)

)

The consensus level of agent i and the consensus level of the cluster Gγ are given

correspondingly: C
(

Oi[γ](t)
)

= 1 − d
(

Oi[γ](t), O[γ](t)
)

= 1 − di[γ] and C
(

O[γ](t)
)

=

∑
|Gγ |
i=1

[
ri[γ]·C

(
Oi[γ](t)

)]
. The group/network consensus level is defined as follows:

C(O(t)) =
Z

∑
z=1

rz·C
(

O[z](t)
)

. (26)

When C(O(t)) > φ, where φ is an arbitrary selected consensus threshold, the consen-
sus reaching process is completed. Otherwise, the agents belonging to the cluster with the
lowest consensus level, say Gγ, need to properly readjust their opinions (Table 2). In this
cluster Gγ, the opinion update of agent i is the following:

Oi[γ](t + 1) = IiOi[γ](t) + (1 − Ii)·
1

|Si ∩ Ei| ∑
j∈Si∩Ei

Oj[γ](t), (27)

where Ii is the opinion inertia of agent i, incorporating his self-confidence, Si is the set of
neighbors of agent i, while Ei is the set of in-cluster agents having similar opinion to agent
i. More specifically, Ei is the set of agents of the cluster Gγ between whom and agent i the
Manhattan distance is smaller or equal than the confidence bound εi of agent i:

dij[γ] = d
(

Oj[γ](t), Oi[γ](t)
)
=

1
mn

p

∑
p=1

q

∑
q=1

∣∣∣op(q)
j[γ] (t)− op(q)

i[γ] (t)
∣∣∣ ≤ εi. (28)
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Table 2. In-Cluster Opinion Diffusion for an agent i of cluster Gγ.

Condition Case Subcase Influence from Opinion Update for
Agent i

Si ∩ Ei ̸= ∅ - all agents j ∈ Si ∩ Ei
Oi[γ](t + 1) = IiOi[γ](t) +

1−Ii
|Si∩Ei | ∑

j∈Si∩Ei

Oj[γ](t)

Si ̸= ∅
The agent κ, specified as:

Oκ[γ](t) =

arg
[

max
j∈Si

{
C
(

Oj[γ](t)
)}]

[C(O(t)) < φ] ∧[
C
(

O[γ](t)
)
= min

z∈{1,...,Z}

{
C
(

O[z](t)
)}] (Si = ∅) ∧ (Ei ̸= ∅)

The agent κ, specified as:
Oκ[γ](t) =

arg
[

max
j∈Ei

{
C
(

Oj[γ](t)
)}] Oi[γ](t + 1) =

IiOi[γ](t) + (1 − Ii)Oκ[γ](t)

Si ∩ Ei = ∅ (Si = ∅) ∧ (Ei = ∅)

A hypothetical agent κ,
defined as:

Oκ[γ](t) = Oi[γ](t) +
εi

dis[γ]

(
Os[γ](t)− Oi[γ](t)

)
with

Os[γ](t) =

arg
[

max
j∈Gγ

{
C
(

Oj[γ](t)
)}]

Due to the fact that confidence bounds εi vary, an agent j may be included in the set
Ei of agent i but the opposite is not necessarily true. Note that distance measures apply
only for the micro case and not for the meso (cluster level) and macro (group level) cases
(Table 1). Nonetheless, further elaboration is possible, at least for the meso case, taking also
into account inter-cluster distances for the formation of consensus, not only the reputation
weights rz (see below).

In case Si ∩ Ei = ∅ agent i updates his opinion via taking into account the opinion of
a single agent κ:

Oi[γ](t + 1) = IiOi[γ](t) + (1 − Ii)Oκ[γ](t) (29)

Depending on the subcase (see Table 2), agent κ can be: (a) the neighbor with the great-
est consensus level in the cluster of agent i (when Si ̸= ∅), (b) the agent with the greatest
consensus level in the cluster of agent i among agents with opinion distance satisfying
the confidence bound of agent i (when (Si = ∅)

∧
(E i ̸= ∅)) and (c) a hypothetical agent

whose opinion distance from agent i is equal to εi (when (Si = ∅)
∧
(E i = ∅) ).

Opinions matrices O[z](t) of all clusters G1,G2, . . . ., GZ are aggregated in the global

opinion matrix O(t) = ∑Z
z=1 rzO[z](t) =

[
op(q)(t)

]
m×n

. When consensus has been globally

achieved at time teq, i.e., C
(
teq
)
> φ, the evaluation E

(
xp
)

of alternative xp is computed as:

E
(

xp
)
=

n

∑
q=1

wp(q)op(q)(teq
)

(30)

where wp(q) is weight of attribute q of alternative p and op(q)(teq
)

is the aggregated group/
network opinion on this particular attribute–alternative pair. The final group/network
decision is

D = max
p∈{1,...,m}

{
E
(
xp
)}

(31)

3.3. Decision Making via Consultation

Shared mental models [91,92] were initially proposed to describe shared cognition in
dyads of agents. These models were afterwards expanded at the group/team level. Thus,
so-called “team mental models” have been used to study collective shared understanding,
beliefs and knowledge inside groups of agents. In this way, valuable insights can be
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extracted, concerning the way team members perceive and interpret knowledge, make
decisions and collaborate with each other [92,93].

In [94], a consultation process in a group of agents is studied. The primary aim of
the model is the optimization of a true utility function U(p), to which no agent has access.
The true utility function U(p) takes values in [0, 1], where p= [x1, x2, . . . , xm] is a plan
of action defined on a m-dimensional problem space. Each dimension xp represents an
“aspect” of the problem. Each plan p corresponds to an opinion set o(p) = {p, U(p)}.
Each agent i has two types of memory, namely:

• The Peer-derived memory Mpeer
i =

{
oij(δ)

}
(N−1)×c

which is derived from the opin-

ion sets of the other N − 1 agents. Each agent i has a limited memory capacity
c. The elements of the peer-derived memory Mpeer

i are the opinion sets oij(δ) ={
pij(δ), Uj

(
pij(δ)

)}
, where pij(δ) is the δ-th plan of agent i derived from agent j and

Uj

(
pij(δ)

)
is the utility assigned to the plan pij(δ), according to the individual utility

function Uj(p) of agent j (see below).

• The Self-derived memory Msel f
i =

{
oii(δ)

}
1×s

which consists of s opinion sets. Each

opinion set oii(δ) =
{
pii(δ), U

(
pii(δ)

)
+ ε
}

consists of a plan, randomly derived from

the m-dimensional problem space and U
(
pii(δ)

)
+ ε is the utility assigned by the true

utility function U(p) to the plan pii(δ), adding a noise component ε ∈ [−η, η], with
η ∈ [0, 1].

At each time step (a consultation round), a discussion among the agents takes place
and each agent adopts a certain number of other opinions from his peers. The memory
capacity c constrains the number of opinions derived from colleagues that an agent can
hold at the same time. Thus, older opinions are gradually replaced by newer ones following
the First-in-First-out (FiFo) principle. Note that the self-derived opinion sets do not get
affected by this “forgetting” process. For each agent i the individual utility function Ui(p)
is defined as

Ui(p) = ∑
j

(
∑
δ

(
CL
(
pij(δ),p

)
·Uj

(
pij(δ)

)))
, (32)

where Uj

(
pij(δ)

)
is the utility value of agent i for the δ-th plan pij(δ) derived from agent j,

and D
(
pij(δ),p

)
=

cl(pij(δ),p)
∑j(∑δ[cl(pij(δ),p)])

is the normalized value of the inverse square distance

(closeness) cl
(
pij(δ),p

)
=
∣∣∣pij(δ) −p

∣∣∣−2
between the plan pij(δ) of agent i derived from

agent j and a plan under consideration p.
Additionally, a tentative group plan pγ =

[
x1(γ), x2(γ), . . . , xm(γ)

]
is discussed, while

each agent i has his own personal plan pmax
i =

[
xmax

1(i) , xmax
2(i) , . . . , xmax

m(i)

]
, which is the

one with the maximum utility according to his individual utility function. At each time
step, an agent κ is randomly selected to speak to the group and suggest a revision of
the group plan. He presents an opinion osug

κ{ξ} =
{
p

sug
κ{ξ}, Uκ

(
p

sug
κ{ξ}

)}
, where p

sug
κ{ξ} =[

x1(γ), . . . , xmax
ξ(κ)

, . . . , xm(γ)

]
is a newly suggested plan. Here the ξ-th aspect xξ[γ] of the

current group plan p[γ] has been replaced by the newly suggested aspect xmax
ξ(κ)

of the
personal plan of agent κ, which he personally considers it important due to its maximization
of the utility gain: ∆Uκ,ξ = max

λ∈{1,2,...,m}

{
Uκ

(
p

sug
κ{λ}

)
− Uκ

(
p[γ]

)}
.

An agent i is convinced only if Ui

(
p

sug
κ{ξ}

)
> Ui

(
pmax

i
)
. Then he updates his personal

plan accordingly, thus pnew_max
i = p

sug
κ{ξ}. Afterwards, the revised individual plan pnew_max

i
might become further refined via a local search for an even better plan p∗ in a sphere
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of radius r centered on pnew_max
i , i.e.,

∣∣p∗ −pnew_max
i

∣∣< r . In this way, it is possible that
further optimization of utility may be achieved.

If the condition Ui

(
p

sug
κ{ξ}

)
> Ui

(
pmax

i
)

is not fulfilled, he still may accept the proposal
with probability:

P
(
pmax

i → p
sug
κ{ξ}

)
= exp

−

∣∣∣psug
κ{ξ} −pmax

i

∣∣∣2
Ti

, (33)

where Ti is the “temperature” (openness) of agent i, indicating his tolerance for accepting
new proposals of lower utility value than the utility value of his own personal plan.

Revision of the group plan p[γ] is implemented if the condition σ
N−1 > θ is satisfied,

where θ is the acceptance threshold and σ is the number of supporters, excluding the
speaker. The algorithm is completed when the group finds a plan with a utility value equal
to the maximum utility value of the true utility function.

3.4. Application in Economics

GDM has been sparsely applied on Economics [95,96]. For instance, in [95], a GDM
model is proposed for simulating decision making among multiple stakeholders (agents) on
the implementation of financial aid programs in rural China. The participating stakeholders-
agents, such as development banks, local government institutions and credit suppliers,
express their opinions in heterogeneous mathematical formulations.

As in the case of [84,90,94], a distinct decision-making mechanism is proposed via
which agents collectively decide on a set of m alternatives X = {x1, x2, . . . , xm}. Each
agent can express his opinion in one of the following formats:

• Preference Utility: The opinion oi of agent i is expressed as a utility vector oi =

ui =
[
u1(i), u2(i), . . . , um(i)

]
containing utility values for each alternative xp with

p = 1, 2, . . . , m. The largest element indicates agent i’s top preference. Relative utilities
vpq(i) =

up(i)
uq(i)

with p, q = 1, 2, . . . , m are encoded in a m × m matrix, indicating the

preference of xp over xq as evaluated by agent i. All relative utilities are encoded

in the opinion matrix Oi = Ui =
[
vpq(i)

]
m×m

. The normalized opinion matrix is

Oi = Ui =

[
vpq(i)

∑m
ξ=1 vξq(i)

]
m×m

.

• Preference Ranking: The opinion oi of agent i is expressed as a ranking vector oi = ri =[
r1(i), r2(i), . . . , rm(i)

]
, whose elements is an ordinal variable, indicating the ranking

of each alternative. If rp(i) = 1 then the alternative xp is agent i’s top preference.

The normalized opinion matrix is Oi = Ri =

[
rpq(i)

∑m
ξ=1 rξq(i)

]
m×m

, where rpq(i) =
m−rp(i)
m−rq(i)

indicates the preference of xp over xq as evaluated by agent i.
• Multiplicative Preference Relation: The opinion oi of agent i is expressed via a Pairwise

Comparison Matrix Oi = Ai =
[

apq(i)

]
m×m

with elements taking values in the interval[
1
9 , 9

]
, satisfying the condition apq(i)·aqp(i) = 1. When apq(i) < 1 then alternative xp is

favored over xq while when apq(i) > 1 the reverse is true. The greater the distance from
1 (i.e., closer to 1/9 or closer to 9), the more preferable the corresponding alternative is.

The normalized opinion matrix is Oi = Ai =

[
apq(i)

∑m
ξ=1 aξq(i)

]
m×m

.

• Additive Preference Relation: The opinion oi of agent i is expressed via a Pairwise

Comparison Matrix Oi = Bi =
[
bpq(i)

]
m×m

, with elements taking values in the interval

[0, 1] and satisfying the condition bpq(i) + bqp(i) = 1. When bpq(i) > 0.5, then alterna-
tive xp is favored over xq while when bpq(i) < 0.5, the reverse is true. The greater the
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distance from 0.5 (i.e., closer to 1 or closer to 0), the more preferable the corresponding

alternative is. The normalized opinion matrix is Oi = Bi =

[
bpq(i)

∑m
ξ=1 bξq(i)

]
m×m

.

Depending on the form of the normalized opinion matrix Oi, each agent is placed
in one of the following four separate sets: Su = {i : Oi = Ui}, Sr = {i : Oi = Ri}, SA =
{i : Oi = Ai}, SB = {i : Oi = Bi}, with Su ∪ Sr ∪ SA ∪ SB = S the union of all sets containing
all agents. A weight ci, indicating the cooperativeness of agent i for reaching consensus, is
assigned to each normalized opinion matrix Oi. Group opinion is defined as the collective
opinion vector ogroup = arg max

o∈Rm
{G(o)} =

[
o1(group), o2(group), . . . , om(group)

]
, where:

G(o) = ∑
i∈Su

(
ci

m

∑
q=1

〈
v[q](i), o

〉)
+ ∑

i∈Sr

(
ci

m

∑
q=1

〈
r[q](i), o

〉)
+ ∑

i∈SA

(
ci

m

∑
q=1

〈
a[q](i), o

〉)
+ ∑

i∈SB

(
ci

m

∑
q=1

〈
b[q](i), o

〉)
(34)

The cosine similarity
〈
o[q](i), o

〉
, with the opinion matrix Oi element o[q](i) taking one

of the following forms, namely v[q](i), r[q](i), a[q](i), b[q](i), is defined as:

〈
o[q](i), o

〉
=

∑m
p=1

(
opq(i)·op

)
√

∑m
p=1 o

2
pq(i)

√
∑m

p=1 o2
p

. (35)

The quantity ∑m
q=1

〈
o[q](i),o

〉
is the sum of the above cosine similarity measures be-

tween the columns o[q](i) of the opinion matrix of agent i and an opinion vector o =

[o1, o2, . . . , om]. The consensus level
G(ogroup)

|S|·m expresses the normalized similarity be-

tween the group opinion ogroup and the opinions oi of the agents. When
G(ogroup)

|S|·m < ε,
where ε is an arbitrary threshold, the consensus level is not acceptable and, therefore, an
opinion update for all agents is required. Then, an agent i will randomly select a new
opinion onew

pq(i) in the interval
[
min

{
opq_group(i), opq(i)

}
, max

{
opq_group(i), opq(i)

}]
, where

opq_group(i) = fi

(
op(group), oq(group)

)
is the collective opinion about xp in terms of xq in a

form understandable to agent i, according to his opinion format.
During the above-described consensus reaching process, agents whose opinions oi

diverge further from the group opinion ogroup are identified and clustered together. Such
non-cooperative agents are called to modify their opinion oi. In case they persist in their
divergence from the group opinion, they forfeit a part of their social influence in the GDM
process as their individual cooperative weight ci is lowered after each iteration but never
completely nullified. At the start of the GDM process, all agents have equal cooperative
weights ci.

4. Knowledge Dynamics (KD)

Alongside OD and GDM, in the field of Sociophysics, Knowledge Dynamics (KD)
is also intensively studied so as to investigate how knowledge is diffused in complex
networks. Knowledge is distinguished from opinion as it requires a justification founded
on logical conclusions about observations [97], not subjective and ad-hoc approximations
of reality. As in the case of OD and GDM, Network Science has been utilized for modelling
knowledge diffusion processes in complex networks [98].

4.1. Knowledge Exchange

One of the most notable agent-based approaches for knowledge diffusion in complex
networks is based on the knowledge exchange principle [99,100]. In [99], agents are
characterized by a knowledge vector containing several knowledge items s = 1, 2, . . . , N.
The corresponding knowledge level of agent i for item s at time step t is denoted by ks

i (t).
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The exchange of knowledge between two neighboring agents is based on the “quid pro
quo” principle (“win–win” interaction). This means that every possible interaction between
two agents must result in mutual benefit, i.e., knowledge gain. The only prerequisite
for knowledge exchange between agents i and j is the existence of a relative knowledge
deficit in at least two different items. This condition is widely adopted in many knowledge
diffusion models [101–103].

For simplicity, it is assumed that agents possess knowledge in only two items. Suppose
that there is a relative knowledge deficit for agent i in item s = 1 and for agent j in item
s = 2, i.e., k1

i (t) < k1
j (t) and k2

j (t) < k2
i (t), correspondingly. Knowledge diffusion is

formulated as follows:

For item s = 1 :

{
k1

i (t + 1) = k1
i (t) + a

(
k1

j (t)− k1
i (t)

)
k1

j (t + 1) = k1
j (t)

}
because k1

i (t) < k1
j (t).

For item s = 2 :

{
k2

i (t + 1) = k2
i (t)

k2
j (t + 1) = k2

j (t) + a
(

k2
i (t)− k2

j (t)
)} because k2

j (t) < k2
i (t),

(36)

where 0 < a < 1 is a constant (similar to the convergence parameter µ in the DW model),
indicating the capacity for knowledge absorption.

It is important to highlight that knowledge diffusion is conditioned on the existence of
a mutual need to increase the present knowledge levels k1

i (t) and k2
j (t). We can contrast this

“quid pro quo” principle (“win–win” interaction), with the widely used bounded confidence
condition (3) in OD. The key difference is that in KD there is an objective superiority of
agent i in comparison to agent j in terms of knowledge in a specific knowledge item,
whereas in OD there is no objective ranking of the agents involved in a social interaction.
The mathematical implication of this remark is that in KD knowledge diffusion in a single
knowledge item is unidirectional, namely from the more knowledgeable agent to the less
knowledgeable one. On the contrary, in OD social influence may be bidirectional, in the
sense a single social interaction may result into a shift of opinion for both interacting agents.

Additionally, it must be noted that in ON diffusion constraints are set by the psychoso-
cial inability to communicate with someone with radically different posture on various
issues (heterophobia), whereas in the context of KD diffusion constraints are set by objec-
tive knowledge gaps between agents. Someone who is vastly inferior in knowledge than
someone highly knowledgeable (experts) simply cannot absorb the available knowledge.
Thus, when communication fails, this is due to objective, not intersubjective, reasons.

4.2. Self-Innovating Agents

Central to the study of knowledge networks is the potential presence of self-innovating
agents [97,101,103,104]. Self-innovating agents can be compared to the informed agents in
OD. Contrary to informed agents, who may act as stealth manipulators of social change,
self-innovating agents are generally regarded as beneficial sources guiding the knowledge
enlightenment of their peers.

The concept of self-innovating agents was firstly proposed in [101]. Here, knowledge is
a scalar variable. At each time step, a self-innovating agent i is selected to innovate, i.e., pro-
duce new knowledge. The process of innovation is formulated as ki(t) = ki(t − 1)(1 + βi),
where βi > 0 is the innovation ability of agent i. As knowledge is of scalar form, not vector,
as in the case of knowledge exchange, there is no prerequisite condition for mutual knowl-
edge gain. Therefore, knowledge diffusion from the self-innovating agent i to a regular
neighboring agent j can be realized only if ki(t) > k j(t), with the knowledge diffusion
formula taking the following form:

kj(t + 1) = k j(t) + aj
(
ki(t)− k j(t)

)
, (37)

where 0 < aj < 1 is the knowledge absorptive captivity of agent j.
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Knowledge level is normalized taking values in the interval [−1, 1]. The innovation
parameter of a self-innovating agent i is regarded as his self-weight, i.e., βi = wii, which
in [97] takes even negative values indicating self-destructive thinking. In addition to the
presence of self-destructive agents, knowledge “destruction” can take place due to the
presence of unreliable knowledge channels (misinformation) or targeted attacks on the
knowledge network (disinformation).

Note that in most KD models [99,101], agents select randomly other agents for knowl-
edge acquisition. This “randomness” assumption for social interaction is also found in most
OD models [31–33]. However, and as we have already noted in the introduction, humans
(or even other intelligent entities, artificial or otherwise) are not material atoms. Their
actions have purpose. Only in certain recent model proposals [105–107], agents are treated
as boundedly rational purposeful individuals [66] limited by their uncertainty about the
knowledge level of their peers and/or the reliability and efficiency of the communication
channels. This key observation distinguishes the classically defined diffusion equation
describing spontaneous diffusion between “mindless” molecules of matter from social in-
teractions between intelligent agents. Taking this key observation into account, the impact
of prioritization of actions and awareness level has been extensively discussed in [105–107]
for KD and in [56,79] for OD.

4.3. Application in Business

Applications of KD in business can also be found in the literature [108,109]. For
example, in [108], knowledge diffusion among Indian companies (agents) in a weighted
directed network is realized due to the presence of interlocking directors, i.e., individuals
who are simultaneously members of different directors’ boards of different companies.
Social interaction essentially takes place in board meetings, with affiliated directors acting
as channels of knowledge transfer. Links are directed, with their direction indicating the
affiliation of the corresponding director, and weighted, with weight w

pj
i→j representing a

separate common interlocking director pj belonging to the boards of both companies i and j
and affiliated towards company j. Two connected agents i and j may exchange knowledge
via two sets of multiple weighted directed links, denoted by ei→j and ej→i indicating the

set of weighted directed links w
pj
i→j and wpi

j→i respectively.
As in [99], each agent (company) i is assigned a knowledge vector containing several

knowledge items s = 1, 2, . . . N, and a corresponding absorptive capacity ai. The knowl-
edge level of agent i in item s at time t is denoted by ks

i (t). For each agent i, knowledge
gain in an item s consists of two parts, namely: (a) a free knowledge gain Gs

i derived from
“free” preliminary contributions from interlocking directors, and (b) a non-free knowledge
gain Fs

i which is based on the “quid pro quo” exchange principle (“win–win” interaction).
For simplicity, it is assumed that agents possess knowledge in only two items. Suppose that
there is a relative knowledge deficit for agent i in item s = 1 and for agent j in item s = 2,
i.e., k1

i (t) < k1
j (t) and k2

j (t) < k2
i (t) correspondingly. Similar to (36), knowledge diffusion

is formulated as follows:

For item s = 1 :

{
k1

i (t + 1) = k1
i (t) + G1

i + F1
i

k1
j (t + 1) = k1

j (t)

}
because k1

i (t) < k1
j (t).

For item s = 2 :

{
k2

i (t + 1) = k2
i (t)

k2
j (t + 1) = k2

j (t) + G2
j + F2

j

}
because k2

j (t) < k2
i (t),

(38)

where the free knowledge gain components are formulated as:

G1
i =

|ej→i |

∑
pi=1

wpi
j→iai

(
k1

j (t)− k1
i (t)

)
, G2

j =

|ei→j |

∑
pj=1

w
pj
i→jaj

(
k2

i (t)− k2
j (t)

)
, (39)
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and the non-free knowledge gain components are formulated as:

F1
i = aimin

{
k1

j (t)− k1
i (t), k2

i (t)− k2
j (t)

}
,F2

j = ajmin
{

k1
j (t)− k1

i (t), k2
i (t)− k2

j (t)
}

(40)

Note that in the case of barter knowledge exchange (38), knowledge gain (incorporat-
ing the difference in absorption rates) has to be equal in terms of quantity for both agents,

i.e., F1
i

ai
=

F2
j

aj
. In contrast, in [99], equality is only in terms of the number of the knowledge

items to be shared.

5. A Critique of Social Diffusion Dynamics in Networks
5.1. Gaps and Issues in the Application of Sociophysics in Real-World Socioeconomic Phenomena

As things stand today, Sociophysics makes possible the quantitative description and
analysis of complex social phenomena, by means of mathematical modelling in social
networks. The age-old dream for a positive social science expressed by thinkers like August
Comte, Émile Durkheim (1858–1917) and Herbert Spencer (1820–1902) might not have been
fully realized but its distant echo can be heard in the modern social diffusion dynamics
research. The value of Sociophysics has been already demonstrated in past cases of success-
ful simulations of the social environment, as evidenced by reportedly accurate predictions
of Sociophysics models on the results of important social processes, e.g., national elections,
referenda, etc. [110]. Of similar value is the applications of Sociophysics in real-world
social processes in the domains of Behavioral Finance, Social Trading and Business, taking
into account the crucial sociological insight that the opinions of financially oriented agents
are socially dependent [67,76,77]. Nonetheless, in order for the Sociophysics paradigm to
offer a substantial contribution to the alleviation of already existing and emerging societal
problems (e.g., disinformation/misinformation, spread of pseudo-scientific theories, lack
of consensus among international actors like states, organizations, etc.) certain evident
boundaries of current research have to be overcome.

Firstly, it should be noted that while Sociophysics applications in the field of behavioral
finance/social trading/business abound in the case of OD, they seem to be scarce in
the cases of GDM and KD. This is partly to be expected since the modern free market
environment contains primarily self-interested agents. Thus, collaboration is not expected
to be the norm. Knowledge sharing between financial/business agents is also uncommon,
save for the case when there is a “quid pro quo” benefit to be gained. Financial/business
actors generally prefer to keep their innovations secret [111]. Nonetheless, existing research
suggests that there is certainly room to further investigate collaboration processes in the
financial/business domain. Instances do exist where collaboration and knowledge sharing
between multiple financial/business agents takes place, e.g., the common practice of co-
branding [112] or the existence of partnerships between start-ups and large established
companies [113].

Secondly, there is a distinctive lack of empirical validation for most proposed models.
Despite the fact that Sociophysics models are built on the basis of common-sense assump-
tions (e.g., the existence of purposeful opinion-spreaders, the desire to collaborate and find
a commonly acceptable solution or the existence of agents with a strong tendency for inno-
vation), model calibration and validation on the basis of real-world data is sorely missing,
except for certain empirically verified statistical observations on behavioral patterns, e.g.,
the fact that existing interpersonal ties tend to influence buying and selling practices of
traders [63,64]. The lack of empirical validation is partly justified by the complexity of the
social world and the expected inability to independently observe social interactions in their
totality, contrary to physical phenomena that can be reproduced in a lab setting. However,
the proliferation of Big Data and Machine Learning/Artificial Intelligence technologies and
the tendency for increasing data accumulation in the corporate and state sectors indicate
that Sociophysics research might hopefully be able to overcome, at least in part, the above-
mentioned limitations [12]. In that case, it would be preferable that model development be
conducted not a priori but in conjunction to the available data.
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5.2. Misalignment between Sociophysics Modelling Assumptions and Social Reality

As regards the extent that Sociophysics modelling assumptions accurately capture,
interpret and represent social reality (at least in accordance with current sociological
understandings) we wish to underscore some important and rather overlooked issues and
their implications. Firstly, it must be noted in most proposed models, simulations converge
to a steady state considered to be the end of the social diffusion process. Although much
focus is placed in formulating how social structure is built from the bottom (micro- level)
to the top (macro- level), no particular emphasis is placed on the opposite, i.e., how an
existing social structure is altered by micro-interactions in turn influenced by it. Contrary
to structural functionalist expectations who expect general social stability and order [114],
the contemporary social world is characterized by temporality, as agents interact with and
transform existing social structures through their actions [115]. Continuous social flux
seems to be the norm, per the well-known aphorism of the Greek philosopher Heraclitus
(“Everything flows”—τὰ πάντα ῥεῖ). Thus, most social structures (e.g., opinion uniformity,
opinion polarization, etc.), are bound to be eventually all but be discarded as agents will
react to the existing “status quo”.

The presence of a co-evolution mechanism between structure and agents’ attributes,
indicating a continuous micro-macro interaction, has been already highlighted in certain
studies [76,77,79,107,116]. Nevertheless, further exploration would be more than welcome
in order to more accurately describe various co-evolutionary processes of social diffusion.
For example, micro-macro interaction could be modeled not only via taking into account the
influence of neighbors on agents’ attributes and actions but of broader structural network
properties as well. See, for example, the probabilistic opinion shift for contrarian agents
in [69] where global distribution of opinion is taken into account and, in particular, the
operation of the GDM model in [90], where opinion update for an agent is simultaneously
dependent on all levels of interaction, micro (opinion of neighbors), meso (cluster opinion)
and macro (collective opinion) (Table 2). We, however, note that what is missing from
the last two formulations is the incorporation of modifications in network structure (i.e.,
activation/deactivation or strengthening/weakening of specific links) as agent attributes,
such as opinion, reputation, authority, etc., shift in time due to the influence of micro,
meso and macro network parameters. In short, simultaneous rejection of link staticity
and incorporation of the direct influence of higher-level properties on agent attributes
are paramount for a proper depiction of agent-structure interaction. To the best of our
knowledge, such contribution is sorely missing from current Sociophysics research.

Secondly, to further elaborate our point, we note that the above-mentioned misalignment
between Sociophysics and social reality can also be attributed to the fact that there is a ten-
dency in many eminent Sociophysics models (e.g., [28,31,32,99]) to treat social interaction as
the product of chance encounters inducing change in social properties (opinion, knowledge,
etc.), much like how random collisions between air molecules induce changes in their physical
properties (direction, speed, mass, etc.). Evidently, this is not how the social world primarily
operates. We are aware of only a handful of modelling attempts [67,105–107], where social
agents are implicitly or explicitly considered purposeful individuals, consciously deciding, on
the basis of individual preferences and previous experience, with whom they will interact and
what their position will be. Therefore, socially influenced as the agents may be, they still oper-
ate on the basis of certain rational criteria, whichever these may be (e.g., previous beneficial
interaction). We think that this is in line with how existing social structures are formed and
re-formed under the influence of individual decisions and actions, notwithstanding the fact
that actors usually do not possess perfect knowledge as regards potential consequences of
their actions [66] due to the immanent social complexity and the resulting interdependence
between individual decisions, selections and actions. This observation has great political,
beyond socioeconomic, relevance and it is probably of key importance for a successful incor-
poration of the element of social complexity in the domains of political science in general and
international politics in particular [117–119].
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Accordingly, the bottom line of our argument is that Sociophysics should treat social
phenomena not as the social equivalent of stochastic or law-based neutral physical processes
but as aspects of emergent and shifting social structures. These structures are formed,
preserved and updated via the deliberate choices of conscious—or, at the very least, partially
conscious due to their potentially biased dispositions—social actors/agents. Each agent
is equipped with (a) a set of individual selection criteria, (b) limited knowledge of their
surroundings and (c) a distinct position in the social structure, implying a certain degree
of influence in the micro, meso and macro levels. The finite structural “resources” at
his disposal permit him to implement—or prevent him from fully implementing—his
own personal goals (e.g., transfer or extraction of knowledge, promotion of opinion, etc.).
Thus, social structure exerts enabling but also constraining effects on conscious individual
action [120].

We believe that the Network Science framework, already employed in Sociophysics, is
ideal for further mathematical elaboration of social structure and its co-evolutionary interac-
tion with individual agent behavior. The element of deliberate inter-agent communication
in the process of mutual constitution between agency and structure is a perhaps over-
looked but nonetheless extremely important point that an aspiring “computational social
science” [12] like Sociophysics should fully take into account in order to soothe the already
noted ontological tension between individual freedom of action and the placement of agent
behavior in a set of mathematical constraints, taking the form of social diffusion equations.

The incorporation of these omissions (neglect of the agent-structure co-evolutionary
interdependence and non-random, conscious communication), as well as the evident
limitations outlined in Section 5.1. (dearth of applications in behavioral finance and
business in the cases of GDM and KD and general lack of empirical validation), is crucial
in order for the distinct advantages and added value of Sociophysics to become apparent.
We suggest that the issues described herein (see Table 3) be tackled in short order for the
discipline of Sociophysics to become accepted as the bleeding edge of applied mathematics
in social sciences (economics, political science, etc.).

Table 3. Key issues, recommendations and indicative approaches for future tackling of important
research gaps/issues in the field of Sociophysics.

Issue Recommendation Preliminary or Indicative Approaches

Dearth of socioeconomic applications in
the GDM and KD categories.

Exploration of collaborative aspects of
socioeconomic reality.

Chao et al. (2021a) [95]
Chao et al. (2021b) [96]
Schweitzer at al. (2022) [121]

Exploration of knowledge transfer
phenomena between financially oriented
agents.

Vaccario et al. (2018) [122]
Sankar et al. (2020) [108]
Shi et al. (2020) [109]

Lack of empirical validation.
Incorporation of available datasets for the
calibration and testing of ABM
sociophysical models.

Schweitzer et al. (2022) [121]
Vaccario et al. (2018) [122]

Misalignment between Sociophysics and
social reality.

Emphasis on agent-structure
co-evolution.

DeLellis et al. (2017) [77]
DeLellis et al. (2018) [76]
Ioannidis et al. (2020) [79]
Ioannidis et al. (2021) [107]
Antoniou et al. (2022) [116]

Depiction of micro, meso and macro-level
influence on agents’ actions and
vice-versa.

Zubillaga et al. (2022) [69]
Li et al. (2022) [90]

Incorporation of the element of conscious
selection and interaction.

Panchenko et al. (2013) [67]
Ioannidis et al. (2018a) [105]
Ioannidis et al. (2018b) [106]
Ioannidis et al. (2021) [107]
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6. Conclusions—Future Prospects

Through a meticulous presentation of the most notable examples of the Sociophysics
discipline in diffusion dynamics modelling, we were able to offer an “eagle’s eye” view
of the existing literature. We provide a much-needed critical appraisal of the current
standing of the discipline, hoping that our contribution will prove to be a beneficial one
for the future of Sociophysics/Econophysics and computational social science in general.
In particular, we showcase how the social world through the use of a mathematics-based
quantitative approach can be fruitfully studied and we present key general approaches and
applications of a more specified socioeconomic character, focused on interactions between
financially oriented agents. We additionally highlight the promises and shortcomings
of current Sociophysics research as we additionally aim to offer a critical view on the
Sociophysics discipline, bringing to the foreground crucial aspects of its often-problematic
correspondence with social reality.

Still, further elaboration is possible, i.e., through indication of specific advantages
and disadvantages of the analyzed methods, an insight that is beyond the scope of this
work. For now, suffice it to say that the appropriateness of each model is dependent on the
specific context in which it is applied and the related well-defined and often conflicting
assessment criteria. More specifically, with respect to the criterion of computational com-
plexity, linear models, such as the ones found, for example in [18,21] have a comparative
advantage. On the contrary, with respect to the criterion of closeness to socioeconomic real-
ity, nonlinear models like the ones found, for instance, in [28,31] are rather more preferable,
since they more effectively capture social complexity. Thus, a balance between conflict-
ing requirements often needs to be achieved. The appearance of more data-enhanced
real world applications of Sociophysics [121,122] will, hopefully, make apparent which
models are more suitable for modelling which aspect of social reality, according to the
criteria mentioned.

From the analysis conducted above, we conclude that current and future approaches
on opinion, consensus and knowledge diffusion dynamics can be beneficially applied in
the context of the modern complex information society [13], especially if the suggestions
presented in Section 5 are to be taken into account through the application of Sociophysics
principles into rather unexplored areas of socioeconomic interaction such as inter-firm
collaboration [95,96,121], inter-firm patent diffusion [108,109,122], etc. Certain crucial
questions include—but not are not limited to—the following: To what extent and manner
firms and entrepreneurs exchange ideas, opinions and information? How can a company
fully benefit from its collaborative interactions with other companies? How decision-
making on the implementation of tasks with important social impact can be achieved
among affected stakeholders, including firms? All the above can be explored through the
incorporation of an increasing abundance of available time series data, pertaining to, for
example, financial transactions, instances of collaboration or common participation and
endorsement of social events. However, we believe that a more detailed mathematical
depiction of agent–structure co-evolution is what is required the most.

We believe that the above proposals are of great relevance for all categories of so-
cial diffusion processes analyzed herein, OD, GDM and KD. In the case of OD, the need
for firms, organizations and governmental agencies to adopt current norms and prevent
the spread of disruptive disinformation/misinformation and fake news in relevant social
networks [123,124] suggests that opinion diffusion modelling will be considered a must-
have tool in the near future. The same is true for KD, since the existence of a rapidly
shifting global social structure has intensified the need for the development of efficient
mechanisms for knowledge transfer [125] and knowledge management [126]. The effec-
tive diffusion of knowledge and innovations in various important domains (e.g., energy
efficiency technologies [109]) is crucial for the sustainable competitiveness and orderly
operation of enterprises, financial organizations or innovation networks. Lastly, efficient
GDM procedures ensure the accommodation of crucial financial/economic issues in areas
such as earthquake sheltering [127] and urban resettlement [96].
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Considering, in toto, the benefits and shortcomings of current Sociophysics research,
it is important to underscore the apparent potential of the Sociophysics/Econophysics
discipline to accurately describe the dynamics of social and economic reality. We believe
that a Sociophysics-based approach might limit the intervention of subjectivity on the
part of the social researcher, particularly as regards the way interaction between different
structural social levels (micro, meso and macro) takes place.
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