On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media
Abstract
1. Introduction
2. Fractional Derivative Operators
2.1. Overview of Operators
2.2. Specific Operators for Electromagnetism
3. Numerical Approximations of Dispersive Media
3.1. Finite-Difference Time-Domain
3.2. Dispersive Dielectric Media
3.3. Empirical Dispersion Laws Applied to FDTD
3.4. Fractional Derivatives in FDTD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef]
- Leibniz, G.W. Letter from Hanover, Germany to GFA L’Hospital, September 30, 1695. Math. Schriften 1849, 2, 301–302. [Google Scholar]
- Podlubny, I.; Magin, R.L.; Trymorush, I. Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 1068–1075. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Mescia, L.; Bia, P.; Caratelli, D. FDTD-Based Electromagnetic Modeling of Dielectric Materials with Fractional Dispersive Response. Electronics 2022, 11, 1588. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Chew, W.C.; Straka, M.; Oristaglio, M.; Wang, T. Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1928–1937. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 37–51. [Google Scholar] [CrossRef]
- Raicu, V. Dielectric dispersion of biological matter: Model combining Debye-type and “universal” responses. Phys. Rev. E 1999, 60, 4677. [Google Scholar] [CrossRef]
- Schuster, J.; Luebbers, R. An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, USA, 21–26 June 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 4, pp. 1988–1991. [Google Scholar]
- Winters, D.W.; Bond, E.J.; Van Veen, B.D.; Hagness, S.C. Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique. IEEE Trans. Antennas Propag. 2006, 54, 3517–3528. [Google Scholar] [CrossRef]
- Bui, M.; Stuchly, S.; Costache, G. Propagation of transients in dispersive dielectric media. IEEE Trans. Microw. Theory Tech. 1991, 39, 1165–1172. [Google Scholar] [CrossRef]
- Smy, T.J.; Stewart, S.A.; Gupta, S. Implicit and explicit FDTD methods for modelling EM metasurfaces. In Proceedings of the 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, USA, 25–29 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–2. [Google Scholar]
- Nasrolahpour, H. Fractional electromagnetic metamaterials. Optik 2020, 203, 163969. [Google Scholar] [CrossRef]
- Luebbers, R.; Hunsberger, F.P.; Kunz, K.S.; Standler, R.B.; Schneider, M. A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat. 1990, 32, 222–227. [Google Scholar] [CrossRef]
- Hawkins, R.J.; Kallman, J.S. Linear electronic dispersion and finite-difference time-domain calculations: A simple approach (integrated optics). J. Light. Technol. 1993, 11, 1872–1874. [Google Scholar] [CrossRef]
- Kelley, D.F.; Luebbers, R.J. Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 1996, 44, 792–797. [Google Scholar] [CrossRef]
- Okoniewski, M.; Mrozowski, M.; Stuchly, M. Simple treatment of multi-term dispersion in FDTD. IEEE Microw. Guid. Wave Lett. 1997, 7, 121–123. [Google Scholar] [CrossRef]
- Sullivan, D.M. Z-transform theory and the FDTD method. IEEE Trans. Antennas Propag. 1996, 44, 28–34. [Google Scholar] [CrossRef]
- Goorjian, P.M.; Taflove, A. Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 1992, 17, 180–182. [Google Scholar] [CrossRef]
- Caratelli, D.; Mescia, L.; Bia, P.; Stukach, O.V. Fractional-Calculus-Based FDTD Algorithm for Ultrawideband Electromagnetic Characterization of Arbitrary Dispersive Dielectric Materials. IEEE Trans. Antennas Propag. 2016, 64, 3533–3544. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Davidson, D.W.; Cole, R.H. Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 1951, 19, 1484–1490. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russia, 1986. (In Russian) [Google Scholar]
- Barbosa, R.S.; Machado, J.T. Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 2006, 3, 5–22. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; U.S. Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- Zhao, D.; Luo, M. Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2019, 346, 531–544. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, S. Generalized Framework for Higher-order Fractional Derivatives—From Riemann-Liouville to Atangana-Baleanu. In Proceedings of the 2019 5th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 10–12 October 2019; pp. 114–118. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Sales Teodoro, G.; Tenreiro Machado, J.A.; Capelas de Oliveira, E. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Volterra, V. Theory of functionals and of integral and integro-differential equations. Bull. Am. Math. Soc. 1932, 38, 623. [Google Scholar]
- Bennett, K.M.; Hyde, J.S.; Schmainda, K.M. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn. Reson. Med. 2006, 56, 235–239. [Google Scholar] [CrossRef]
- Newman, M. Power-Law Distribution. Significance 2017, 14, 10–11. [Google Scholar] [CrossRef]
- Stumpf, M.P.; Porter, M.A. Critical truths about power laws. Science 2012, 335, 665–666. [Google Scholar] [CrossRef]
- Hristov, J. On the Atangana–Baleanu derivative and its relation to the fading memory concept: The diffusion equation formulation. In Fractional Derivatives with Mittag-Leffler Kernel; Springer: Berlin/Heidelberg, Germany, 2019; pp. 175–193. [Google Scholar]
- Hristov, J. Derivatives with Non-Singular Kernels from the Caputo-Fabrizio Definition and Beyond: Appraising Analysis with Emphasis on Diffusion Models. Frontiers 2017, 1, 270–342. [Google Scholar]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. Some applications to partial differential equations. Progr. Fract. Differ. Appl. 2021, 7, 79–82. [Google Scholar]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 2017, 52, 3043–3052. [Google Scholar] [CrossRef]
- Gao, F.; Yang, X.J. Fractional Maxwell fluid with fractional derivative without singular kernel. Therm. Sci. 2016, 20, 871–877. [Google Scholar] [CrossRef]
- Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique; Department of Aerospace and Mechanical Engineering, University of Notre Dame: Notre Dame, IN, USA, 2004; pp. 1–28. [Google Scholar]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Marichev, O.; Samko, S. Fractional Integrals and Derivatives (Theory and Applications); Gordon and Breach Science: Philadelphia, PA, USA, 1993. [Google Scholar]
- Gulgowski, J.; Stefański, T.P. On applications of fractional derivatives in electromagnetic theory. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 13–17. [Google Scholar]
- Rogosin, S.; Dubatovskaya, M. Letnikov vs. Marchaud: A survey on two prominent constructions of fractional derivatives. Mathematics 2017, 6, 3. [Google Scholar] [CrossRef]
- Gibson, W.C. The Method of Moments in Electromagnetics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Jin, J.M. The Finite Element Method in Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kunz, K.S.; Luebbers, R.J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Miller, E. Time-domain modeling in electromagnetics. J. Electromagn. Waves Appl. 1994, 8, 1125–1172. [Google Scholar] [CrossRef]
- Liu, H.; Xing, B.; Wang, H.; Cui, J.; Spencer, B.F. Simulation of ground penetrating radar on dispersive media by a finite element time domain algorithm. J. Appl. Geophys. 2019, 170, 103821. [Google Scholar] [CrossRef]
- van’t Wout, E.; van der Heul, D.R.; van der Ven, H.; Vuik, C. The Influence of the Exact Evaluation of Radiation Fields in Finite Precision Arithmetic on the Stability of the Time Domain Integral Equation Method. IEEE Trans. Antennas Propag. 2013, 61, 6064–6074. [Google Scholar] [CrossRef]
- van Diepen, P.W.; van Beurden, M.C.; Dilz, R.; Zwamborn, A.P. The role of jordan blocks in the mot-scheme time domain efie linear-in-time solution instability. Prog. Electromagn. Res. B 2022, 95, 123–140. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Taflove, A.; Hagness, S.C.; Piket-May, M. Computational electromagnetics: The finite-difference time-domain method. In The Electrical Engineering Handbook; Academic Press: Cambridge, MA, USA, 2005; Volume 3, pp. 629–670. [Google Scholar]
- Gandhi, O.; Gao, B.Q.; Chen, J.Y. A frequency-dependent finite-difference time-domain formulation for general dispersive media. IEEE Trans. Microw. Theory Tech. 1993, 41, 658–665. [Google Scholar] [CrossRef]
- Garcia, S.G.; Hung-Bao, T.M.; Martin, R.G.; Olmedo, B.G. On the application of finite methods in time domain to anisotropic dielectric waveguides. IEEE Trans. Microw. Theory Tech. 1996, 44, 2195–2206. [Google Scholar] [CrossRef]
- Teixeira, F.L. Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 2008, 56, 2150–2166. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999, 32, R57. [Google Scholar] [CrossRef]
- Torres, F.; Vaudon, P.; Jecko, B. Application of fractional derivatives to the FDTD modeling of pulse propagation in a Cole–Cole dispersive medium. Microw. Opt. Technol. Lett. 1996, 13, 300–304. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S. An improved FDTD scheme with polarization piece-linearity technique for biological tissue modeling. Microw. Opt. Technol. Lett. 2012, 54, 888–891. [Google Scholar] [CrossRef]
- Bia, P.; Mescia, L.; Caratelli, D. Fractional calculus-based modeling of electromagnetic field propagation in arbitrary biological tissue. Math. Probl. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Mescia, L.; Bia, P.; Caratelli, D. Fractional derivative based FDTD modeling of transient wave propagation in Havriliak–Negami media. IEEE Trans. Microw. Theory Tech. 2014, 62, 1920–1929. [Google Scholar] [CrossRef]
- Causley, M.F.; Petropoulos, P.G.; Jiang, S. Incorporating the Havriliak-Negami dielectric model in the FD-TD method. J. Comput. Phys. 2011, 230, 3884–3899. [Google Scholar] [CrossRef]
- Chakarothai, J. Novel FDTD scheme for analysis of frequency-dependent medium using fast inverse Laplace transform and Prony’s method. IEEE Trans. Antennas Propag. 2018, 67, 6076–6089. [Google Scholar] [CrossRef]
- Guo, B.; Li, J.; Zmuda, H. A new FDTD formulation for wave propagation in biological media with Cole–Cole model. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 633–635. [Google Scholar] [CrossRef]
- Wismer, M.G.; Ludwig, R. An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1995, 42, 1040–1049. [Google Scholar] [CrossRef]
- Kelley, D.F.; Destan, T.J.; Luebbers, R.J. Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. IEEE Trans. Antennas Propag. 2007, 55, 1999–2005. [Google Scholar] [CrossRef]
- Petropoulos, P.G. Stability and phase error analysis of FD-TD in dispersive dielectrics. IEEE Trans. Antennas Propag. 1994, 42, 62–69. [Google Scholar] [CrossRef]
- Baker, G.A.; Baker, G.A., Jr.; Graves-Morris, P.; Baker, S.S. Pade Approximants: Encyclopedia of Mathematics and It’s Applications; Cambridge University Press: Cambridge, UK, 1996; Volume 59. [Google Scholar]
- Pereda, J.A.; Vegas, Á.; Prieto, A. FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique. IEEE Trans. Microw. Theory Tech. 2002, 50, 1689–1695. [Google Scholar] [CrossRef]
- Weedon, W.H.; Rappaport, C.M. A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media. IEEE Trans. Antennas Propag. 1997, 45, 401–410. [Google Scholar] [CrossRef]
- Rekanos, I.T. Consistent FDTD Modeling of Dispersive Dielectric Media via Multiple Debye Terms Derived Rigorously by Padé Approximants. IEEE Trans. Antennas Propag. 2022, 70, 12030–12039. [Google Scholar] [CrossRef]
- Rekanos, I.T.; Papadopoulos, T.G. An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media. IEEE Trans. Antennas Propag. 2010, 58, 3666–3674. [Google Scholar] [CrossRef]
- Kashiwa, T.; Ohtomo, Y.; Fukai, I. A finite-difference time-domain formulation for transient propagation in dispersive media associated with Cole-Cole’s circular ARC law. Microw. Opt. Technol. Lett. 1990, 3, 416–419. [Google Scholar] [CrossRef]
- Tofighi, M.R. FDTD modeling of biological tissues Cole–Cole dispersion for 0.5–30 GHz using relaxation time distribution samples—Novel and improved implementations. IEEE Trans. Microw. Theory Tech. 2009, 57, 2588–2596. [Google Scholar] [CrossRef]
- Raju, G.G. Dielectrics in Electric Fields: Tables, Atoms, and Molecules; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Parks, T.W.; Burrus, C.S. Digital Filter Design; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Sullivan, D.M. Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propag. 1992, 40, 1223–1230. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Pereira, O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. Mag. 1995, 37, 48–55. [Google Scholar] [CrossRef]
- Pontalti, R.; Cristoforetti, L.; Antolini, R.; Cescatti, L. A multi-relaxation (FD)/sup 2/-TD method for modeling dispersion in biological tissues. IEEE Trans. Microw. Theory Tech. 1994, 42, 526–528. [Google Scholar] [CrossRef]
- Rekanos, I.T.; Yioultsis, T.V. Approximation of Grünwald-Letnikov fractional derivative for FDTD modeling of cole-cole media. IEEE Trans. Magn. 2014, 50, 181–184. [Google Scholar] [CrossRef]
- Gedney, S.D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antennas Propag. 1996, 44, 1630–1639. [Google Scholar] [CrossRef]
- Mescia, L.; Bia, P.; Caratelli, D. Fractional-Calculus-Based Electromagnetic Tool to Study Pulse Propagation in Arbitrary Dispersive Dielectrics. Phys. Status Solidi A 2019, 216, 1800557. [Google Scholar] [CrossRef]
- Antonopoulos, C.S.; Kantartzis, N.V.; Rekanos, I.T. FDTD method for wave propagation in Havriliak–Negami media based on fractional derivative approximation. IEEE Trans. Magn. 2017, 53, 7201404. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Beylkin, G.; Monzón, L. On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 2005, 19, 17–48. [Google Scholar] [CrossRef]
Fractional Derivatives | ||
---|---|---|
Riemann–Liouville/Caputo | ||
Caputo–Fabrizio | exp | |
Atangana–Baleanu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deogan, A.S.; Dilz, R.; Caratelli, D. On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media. Mathematics 2024, 12, 932. https://doi.org/10.3390/math12070932
Deogan AS, Dilz R, Caratelli D. On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media. Mathematics. 2024; 12(7):932. https://doi.org/10.3390/math12070932
Chicago/Turabian StyleDeogan, Aneesh S., Roeland Dilz, and Diego Caratelli. 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media" Mathematics 12, no. 7: 932. https://doi.org/10.3390/math12070932
APA StyleDeogan, A. S., Dilz, R., & Caratelli, D. (2024). On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media. Mathematics, 12(7), 932. https://doi.org/10.3390/math12070932