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Abstract: Fractional derivative operators are finding applications in a wide variety of fields with their
ability to better model certain phenomena exhibiting spatial and temporal nonlocality. One area in
which these operators are applicable is in the field of electromagnetism, thereby modelling transient
wave propagation in complex media. To apply fractional derivative operators to electromagnetic
problems, the operator must adhere to certain principles, like the trigonometric functions invariance
property. The Grünwald–Letnikov and Marchaud fractional derivative operators comply with these
principles and therefore could be applied. The fractional derivative arises when modelling frequency-
dispersive dielectric media. The time-domain convolution integral in the relation between the electric
displacement and the polarisation density, containing an empirical extension of the Debye model,
is approximated directly. A common approach is to recursively update the convolution integral by
approximating the time series by a truncated sum of decaying exponentials, with the coefficients
found through means of optimisation or fitting. The finite-difference time-domain schemes using
this approach have shown to be more computationally efficient compared to other approaches using
auxiliary differential equation methods.

Keywords: fractional operator theory; electromagnetics; finite-difference time-domain; frequency-
dispersive media

MSC: 78A25; 78M20; 26A33

1. Introduction

Fractional calculus is the theory of derivatives and integrals of an arbitrary order [1].
In other words, it is a generalisation of classical integer order calculus. Therefore, it possesses
all the capabilities of classical calculus with additional features. For example, fractional
operators can better model certain phenomena with spatial and temporal nonlocality [2].

The theory of fractional calculus was postulated in 1695 shortly after classical calcu-
lus [3] and developed thereafter in 1823 [4]. Its applications were limited, compared to
classical calculus, due to the complexity of the equations, thereby making it extremely diffi-
cult or impossible to solve analytically. However, after the development of the computer,
it became possible to compute fractional derivatives and integrals numerically.

Because of this, they are finding applications in a wide variety of fields: viscoelastic-
ity, control theory, biology, physics, economics, electromagnetism, and many more [5,6].
Most physical phenomena in these domains are governed by partial differential equa-
tions (PDEs). However, certain phenomena can be better modelled using fractional-order
derivatives.

One such phenomenon is in the field of electromagnetism. Maxwell’s equations
are a set of coupled partial differential equations (PDEs), which, along with the Lorenz
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force, governs classical electrodynamics, although these equations only employ integer
calculus. On the other hand, heuristic measurement-based models describing the relaxation
of electromagnetic waves in frequency-dispersive materials fit very well with fractional
calculus [7].

Frequency-dispersive media are often encountered in nature, so being able to model
these materials well is essential to understanding and predicting their behaviour. Some
prominent applications of this include the following: ground-penetrating radar [8,9], bio-
logical media [10–13], and nanophotonics [14,15].

Algorithms implementing frequency-dispersive media in the framework of the finite-
difference time-domain (FDTD) method have been developed for this purpose [16]. The
most commonly used methods are recursive convolution (RC) methods [17,18], auxiliary
differential equation (ADE) methods [19], and Z-transform methods [20], where the ADE
and Z-transform methods are very similar in their approach.

The RC method approximates a convolution integral, in the relation between the
electric displacement and the polarisation density, as a discrete summation solved using
a recursive procedure. In the ADE method, the approach is to transform the complex
permittivity from the frequency domain into the time domain using the inverse Fourier
transform, which results in a differential equation in the time domain relating the electric
displacement to the electric field. Then, the derivatives are approximated with finite
differences based on Taylor series expansions [21]. The Z-transform method converts the
time-domain convolution integral into a multiplication in the z domain, thus leading to a
direct FDTD implementation. Essentially, the Z-transform is a more general version of the
discrete Fourier transform. Although the RC and ADE approaches have similar accuracy,
the RC method can be more computationally efficient [22], while ADE methods are easier
to formulate and directly implement in the framework of the FDTD.

To better model dielectric media in the FDTD framework, more accurate dispersion
laws should be used. Such empirical dispersion models have been derived based on the
Debye model. Namely, these include the Cole–Cole [23], Cole–Davidson [24], Havriliak–
Negami [25], and Raicu models [10]. However, implementing these models in the FDTD
framework is challenging.

For example, the RC method cannot be directly incorporated into the FDTD scheme
when using these empirical models. This is because the RC methods need to transform
the frequency-domain permittivity into a time-domain function in order to compute the
convolution integral, which, when using these empirical models, leads to complicated time-
domain expressions of the permittivity function containing fractional derivatives. There are
analytical solutions for some fractional orders of the fractional differential equation [26].
However, this is not the case for modelling transient wave propagation, which requires
numerical treatment.

It is also more difficult to utilise empirical dispersion models in the framework of the
FDTD using the ADE or Z-transform methods, as the fractional-order conversion schemes
lead to nonrational Z formulae [27].

In this paper, an overview of fractional derivative operators is provided in Section 2,
with an emphasis on the operators most suitable to the application of EM problems. A
review of the different methods to implement these empirical dispersion models in the
framework of the FDTD is given in Section 3, thereby focusing on methods using fractional
derivatives.

2. Fractional Derivative Operators
2.1. Overview of Operators

There are many different definitions of fractional derivative operators: Riemann–
Liouville, Caputo, Hilfer, Grünwald–Letnikov, Caputo–Fabrizio [28], Atangana–Baleanu [29],
Coimbra and many more [30]. The reason so many fractional derivative operators exist is
because there are no unique solutions. So, the choice depends on the context or application,
more specifically, the functional space under consideration. Additionally, unlike the integer
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derivative operator, a fractional derivative is not a local operator, thereby leading to many
different options.

Further increasing the number of operators, there are left- and right-sided fractional
derivatives [30]. Take the Riemann–Liouville derivatives as example. Suppose the function
f (t) is defined on the interval [a, b], where a and b can be infinite; then, for t ≥ a, the
Riemann–Liouville left-sided derivative [30] can be given as

Dα
a+ f (t) =

1
Γ(n − α)

dn

dtn

∫ t

a
(t − τ)n−α−1 f (τ)dτ, (1)

and for t ≤ b, the Riemann–Liouville right-sided derivative [30] reads

Dα
b− f (t) =

(−1)n

Γ(n − α)

dn

dtn

∫ b

t
(τ − t)n−α−1 f (τ)dτ. (2)

Here, Dα denotes the fractional derivative operator raised to the order α, γ(·) is the
canonical gamma function [31], α ∈ C, and ℜ(α) ∈ (n − 1, n], where n ∈ Z≥0 and ℜ(·)
define the real part of a complex number. A physical interpretation can be given assuming t
is time, then f (t) represents a process changing with time. Taking t as the present moment
in time and letting τ < t, f (τ) describes the past states of f (left-sided derivative), whereas
in letting τ > t, f (τ) describes the future states of f (right-sided derivative). Therefore,
to reduce the number of definitions under consideration, it is reasonable to only consider
left-sided derivatives when describing physical phenomena, as the dependence of present
states on the future is generally not known (causality).

Since it is not convenient to have multiple definitions of fractional derivative operators,
there have been studies working towards generalising them [32,33]. They introduce a
general framework whereby changing a kernel and normalisation constant gives a known
fractional derivative. It is important to note that the generalisation reduces to two forms,
with one being the generalised Riemann–Liouville type derivative: (GRL) [32]:

Dα
GRL f (t) =

d
dt

N(α)
∫ t

a
k(t − τ, α) f (τ)dτ, (3)

and the other being the generalised Caputo-type derivative (GC) [32]:

Dα
GC f (t) = N(α)

∫ t

a
k(t − τ, α)

d f (τ)
dτ

dτ, (4)

where Dα represents the fractional derivative operator, 0 ≤ α ≤ 1, k(t, α) is the kernel
function, N(α) is the normalisation function, and f (t) is some continuous, defined, and
differentiable function.

By filling in the kernel and normalisation functions given in Table 1 into the generalised
framework, known fractional derivatives can be obtained [32].

Table 1. List of some kernel functions for fractional derivatives [32].

Fractional Derivatives k(t, α) N(α)

Riemann–Liouville/Caputo t−α 1
Γ(1−α)

Caputo–Fabrizio exp(− α
1−α t) M(α)

1−α

Atangana–Baleanu Eα(− α
1−α t) B(α)

1−α

After the development of multiple definitions of fractional derivatives, there has
been much discussion on the conditions classifying them [34–36], with many based on the
general laws formulated by Volterra [37]. There are properties that should be met by the
operator, but generalising them is not trivial, because depending on the application, one
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type of kernel may be more useful than another [2]. For example, a stretched exponential
model was used to fit the data in a study on heterogeneous water diffusion in the human
brain using magnetic resonance imaging (MRI) [38]. So, a fractional derivative operator
with a stretched exponential kernel would be more suited to this application than a power
law kernel.

The power law kernels of the Riemann–Liouville and Caputo derivatives are widely
used, as they can model many phenomena [39]. But the power law kernel is an infinite
system with a so-called heavy tail (slow decay rate); thus, it should not be used for systems
which do not share this property [40]. Another distinguishing property is that the kernel
bears a singularity at one of the end points of the interval. However, singular kernels cannot
accurately describe certain phenomena, like the those related to material heterogeneities [28]
or dispersive phenomena [41]. This is because the power law kernel is more affected by
events further in the past. So, another type of kernel must be adopted for these situations.

One such nonsingular kernel is the Caputo–Fabrizio kernel, which uses an exponential
function that does not contain any singularities [28]. Exponential kernels are less affected
by past events; in other words, they exhibit stronger fading memory than the power law
kernel [42]. In other words, the kernel is more local. Consequently, exponential kernels
do not meet all the conditions required to be a fractional operator [43]. However, it can
still be used as a fractional operator in applications which do not require this nonlocality
principle to be satisfied, like for the Gurtin–Pipkin theory of heat conduction with finite
wave speeds [32].

Another nonsingular kernel is the Atangana–Baleanu kernel, which is based on the
Mittag–Leffler function, Eα and was developed to solve the nonlocality mathematical issue
of the Caputo–Fabrizio kernel [29].

There has been some discussion on whether nonsingular kernels should be
used [44–46]. Disregarding the mathematical properties, these kernels have been shown to
model certain phenomena well [47,48]. Although certain kernels might not be appicable
for frequency-dispersive media, these kernels might be very suitable for other problems.

2.2. Specific Operators for Electromagnetism

The Riemann–Liouville type can be seen as a derivative of the convolution of a
given function with the power law kernel. Similarly, the Caputo type can be seen as the
convolution of the derivative of a given function with the power law kernel. In some
situations, one type might be more useful than the other.

For example, when solving initial value problems for fractional-order differential
equations, the Caputo-type derivative could be preferred [49]. It is possible to solve these
equations using a Riemann–Liouville-type derivative, but the initial conditions required for
a solution are themselves of noninteger order, which is physically unacceptable. However,
if the initial conditions are zero, then a physical meaning can be attributed [50]. And for this
case, the Riemann–Liouville-type derivative and Caputo-type derivative are equivalent.

It should be noted that the generalisation in Ref. [32] is restricted to fractional orders
of 0 < α < 1. A generalised Caputo-type fractional derivative that also holds for higher
orders is given in Ref. [33]:

Dn+α
GC f (t) = N(α)

∫ t

a
k(t − τ, α)

dn+1 f (τ)
dtn+1 dτ, (5)

where α ∈ [0, 1],n ≤ (n + α) ≤ n + 1, with n ∈ N. A generalised Riemann–Liouville-
type fractional derivative which holds for higher orders was excluded because it required
physically unacceptable initial conditions [33]. But, as discussed previously, depending on
the application, physically acceptable initial conditions can be realised [50]. So, a higher-
order semigeneralised Riemann–Liouville-type fractional derivative should be possible
within certain conditions [33]. However, unless there is a way to derive physical meaning to
initial conditions expressed as fractional derivatives, then a fully generalised framework for
the Riemann–Liouville-type fractional derivatives does not make sense physically [33,50].
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It has been suggested that the so-called Grünwald–Letnikov and Marchaud derivatives,
which are equivalent for some cases [51], are more suited for EM problems than the
Riemann–Liouville and Caputo derivatives with a finite base point [52]. This is due to the
fact that the Riemann–Liouville and Caputo derivatives do not satisfy all the properties
deemed necessary when treating electromagnetic problems. These properties are linearity

Dα(a f (t) + bg(t)) = aDα f (t) + bDαg(t), (6)

the index law
DαDβ f (t) = DβDα f (t) = Dα+β f (t), (7)

and trigonometric functions invariance

Dαejωt = (jω)αejωt, (8)

where j =
√
−1, ω is the angular frequency, and α, β ∈ R. The so-called trigonometric

function invariance property, regarding phasor representations of signals, is specific to
electromagnetic theory [52].

Additionally, the Grünwald–Letnikov and Marchaud derivatives are a generalisation
of the Riemann–Liouville derivative and can be applied to a wider class of functions [53].
Both are based on the use of differences, with the Grünwald–Letnikov derivative being
based on extending the binomial expansion of the Newtonian derivative to fractional
orders.

To summarise, when dealing with problems in the field of electromagnetism, only
fractional derivative operators that satisfy these aforementioned properties should be used.

3. Numerical Approximations of Dispersive Media

Fractional derivative operators applied to the fractional partial differential Maxwell’s
equations cannot be solved analytically. Therefore, computational electromagnetics (CEMs)
techniques must be employed. The most common techniques are the method of moments
(MoM) [54], the finite element method (FEM) [55], and the FDTD method [56]. These
methods can be divided in two categories: the frequency domain (FEM and MoM) and the
time domain (FDTD).

FEM divides the domain into finite elements and solves for polynomial approxima-
tions to the unknown functions on each element. It is especially useful when dealing
with complicated geometries where higher-order approximations are desired. Another
frequency domain method is MoM. This integral equation-based boundary element method
reformulates the equations governing a boundary value problem into a matrix equation
whose numerical solution can become computationally intensive and require significant
memory and time as the size of the problem increases. This is particularly true for problems
involving large structures or very fine details, where the number of unknowns can become
very large.

The aforementioned frequency domain approaches provide a solution for a single
frequency. Since one often has easy access to the properties of complex dispersive materials
as a function of frequency, this allows for easily setting up the equations for a single
frequency. However, the main drawback is that it is hard to find a solution to ultrawide
bandwidth (UWB) excitations, since then the method would need to be iterated over many
frequencies, which can be very computationally expensive. For UWB excitations, it is
often beneficial to work in the time domain, in which an UWB excitation requires only one
simulation. Therefore, the FDTD framework would be the most convenient choice, since it
works in the time domain, and complex materials can also be conveniently modelled in the
time domain [57]. Therefore, the FDTD method is most commonly used.

For completeness, it should be noted that variants of FEM and MoM also exist for the
time domain. In principle, the finite-element time-domain (FETD) method could also be
employed. Even though the FETD method has shown potential for modelling dispersive
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media, it is more complicated to implement and is not as developed as the FDTD method
when considering complex media [58]. Additionally, work has also been done on the
time-domain MoM [59,60], but this work is still far away from implementing dispersive
media altogehter. Therefore, we focus on the FDTD method, since it is currently the
most-used approach.

3.1. Finite-Difference Time-Domain

The FDTD method is based upon the application of the finite-difference approximation
for both temporal and spatial discretization. Its explicit formulation, as introduced by
Yee in Ref. [61], is second-order accurate, robust, simple to implement, and displays
reduced computational cost. The numerical errors arising from the FDTD method are
well known [62]. More importantly, the fact that the FDTD method treats nonlinear and
impulsive behaviour naturally is especially useful for the UWB EM characterisation of
complex media.

When solving problems using the FDTD method, it was initially assumed that the
medium is isotropic, nondispersive, linear, and time-invariant, as this was valid for many
cases. However, as the FDTD method grew in popularity, algorithms were devised to solve
Maxwell’s equations in complex media [63,64], where these assumptions are not absolutely
necessary [65].

3.2. Dispersive Dielectric Media

Dispersive dielectric media exhibit a permittivity function that is frequency-dependent
when exposed to a time-harmonic electromagnetic field. This is because there is a slight
delay between changes in the material polarisation and changes in the electric field. The in-
trinsic relationship between the electric displacement, D, and the electric field intensity,
E, for a causal, linear, isotropic dispersive dielectric is given as

D(t) = ϵ0E(t) + ϵ0

∫ t

−∞
χe(t′)E(t − t′)dt′, (9)

where t represents time, ϵ0 is the electric permittivity in a vacuum, and χe is the electric
susceptibility. And in the time-harmonic form, it is given as

D(ω) = ϵ0(1 + χe(ω))E(ω)

= ϵ(ω)E(ω),
(10)

where ω is the angular frequency, and ϵ(ω) is the complex permittivity function.
There are many models which characterise this complex permittivity function, with

the most simple being the Debye model, which can be expressed as

ϵr(ω) = ϵr∞ +
N

∑
i=1

ϵrs − ϵr∞

1 + jωτi
− j

σ

ϵ0ω
, (11)

where ϵr(ω) is the relative complex permittivity function, ϵr∞ is the relative permittivity at
infinite frequency, ϵrs is the static (zero frequency) relative permittivity, j is the imaginary
number, j2 = −1, τ is the relaxation time, and σ is the ionic conductivity.

Although this model is a suitable representation for some dielectrics, there are a num-
ber of dielectrics exhibiting exponential relaxations, which show significant deviations
from the Debye model [66]. To allow for more accurate fitting of the experimental data,
empirical extensions of the Debye model have been developed. Namely, in increasing order
of generalisation, the dielectric dispersion laws, for media exhibiting multiple relaxation
processes, are defined in the Cole–Cole model [23]

ϵr(ω) = ϵr∞ +
N

∑
i=1

ϵrsi
− ϵr∞

1 + (jωτi)αi
− j

σ

ϵ0ω
, (12)
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the Cole–Davidson model [24]

ϵr(ω) = ϵr∞ +
N

∑
i=1

ϵrsi
− ϵr∞

(1 + jωτi)βi
− j

σ

ϵ0ω
, (13)

the Havriliak0-Negami model [25]

ϵr(ω) = ϵr∞ +
N

∑
i=1

ϵrsi
− ϵr∞

(1 + (jωτi)αi )βi
− j

σ

ϵ0ω
, (14)

and the Raicu model [10]

ϵr(ω) = ϵr∞ +
N

∑
i=1

ϵrsi
− ϵr∞

((jωτi)νi + (jωτi)αi )βi
− j

σ

ϵ0ω
, (15)

where 0 < αi, βi, and νi < 1 are adjustable parameters that determine the shape of the
complex permittivity curve, and i =1,2, . . . , N, where N is the number of relaxation
processes transpiring in the dielectric material.

3.3. Empirical Dispersion Laws Applied to FDTD

The need for fractional derivatives arises when the procedure is based on approximat-
ing the time-domain convolution integral in (9). Most methods try to recursively update
the convolution integral by approximating the time series by a truncated sum of decaying
exponentials [67], with the coefficients found by some means of optimisation or fitting, like
enhanced weighted quantum particle swarm optimisation [22] or the damped least-squares
method [68], for example. But, other methods also exist, thereby approximating the com-
plex permittivity function using a general series expansion [69], a binomial series [70], or
by using a fractional polynomial series [7].

Although fractional derivatives are more computationally expensive to solve due
to their nonlocality and difficulties in discretisation, there have been advancements to
overcome these drawbacks [22,69]. For example, a formulation was developed using
the Riemann–Liouville derivative to find the optimal truncation of the binomial series
relevant to the fractional derivative [70], meaning the method now requires less memory,
which makes the scheme more computationally efficient, as the relation between the
accuracy of the method and the length of the weighted summation of exponentials is known.
Additionally, in Ref. [71], a technique was developed which reduced the computational
storage for the Havriliak–Negami model from O(N) to O(log N).

These approaches are based on the time-domain empirical dispersion laws in the FDTD
method by applying fractional derivatives. The other methods deal with the frequency-
domain permittivity function resulting in an ADE, which is appropriately discretised. This
escapes directly dealing with the fractional derivative. It does this by transforming the
time-domain response into the frequency or Z domain, like in Ref. [72]. Similar to the
previous approach, a means to find the coefficients of the FDTD update equations are used,
for example, using a least-squares fitting method [73].

The Z-transform method was implemented for fractional derivatives in Ref. [74] by
expanding the nonrational Z formulae using a truncated Taylor series, which is converted
into a difference equation. This truncation, which is a form of the “short memory” principle [5],
causes a clipping of the “history” of the function so that only the “recent memory” is
considered. However, the stability and accuracy of the method is not well defined, so it is
unclear at which point to truncate the power series to achieve a certain level of accuracy.

Many FDTD algorithms constructed for Debye media can efficiently accommodate
multiple Debye functions. In view of this, a method was developed to approximate the
frequency-domain complex permittivity using a weighted sum of Debye functions by
utilising a hybrid particle swarm optimisation approach [75]. Even though the stability
and accuracy properties are the same as the schemes incorporating the Debye dielectric
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model [76], due to the band-limited nature of the approximation and not taking the singu-
larity in the fractional relation into account, the method is unable to compute the impulse
or step response of spatially complex dispersive media.

The Pade approximant is another technique to approximate a function using a rational
function [77]. It often gives a better approximation of a function compared to truncating its
Taylor series, and it could be used where the Taylor series does not converge. Accordingly,
instead of using a truncated Taylor series, like in Ref. [74], a method which uses the Pade
approximation of the complex frequency-dependent permittivity in the Z domain was
developed [78,79]. However, the relation between the order of the polynomials and the
accuracy of the results is not stated. This dependency is important because there is a tradeoff
between accuracy and memory requirements. The higher order polynomials give more
accurate results but at the cost of memory storage. Additionally, the method in Ref. [79]
derives a dispersion relation that is dependent on the model parameters, meaning the
stability analysis must be performed every time the model parameters change.

Another technique which used the Pade approximant found that under certain con-
ditions, it is equal to a weighted sum of Debye terms [80], thereby building on the work
in Ref. [81]. This means that there is no need to use any nonlinear multivariate optimisation,
thus saving time and memory. They started by filling in the susceptibility function into the
polarisation relation between the electric field and the polarisation density, P, and taking
the inverse Fourier transform (IFT), which, for the Cole–Cole media, results in the equation
from Ref. [80]:

P(t) + τα ∂α

∂tα
P(t) = ϵ0∆ϵE(t). (16)

To get around dealing with this fractional derivative, Ref. [80] approximated χe(ω) as
a sum of weighted Debye terms:

χ̂e(ω) =
M

∑
m=1

am

1 + jωτm
, (17)

where M is the number of relaxation times, and am and τm are parameters that can be
estimated empirically [82] by using nonlinear optimisation techniques [83] or by using Pade
approximants [80]. This approximates (16) by M discretized first-order differential equations:

Pm + τm
∂

∂t
Pm = ϵ0∆ϵamE, (m = 1, 2, . . . , M) (18)

thus making it easier to discretize and directly implement in the framework of the FDTD.
Finally, the update equations are derived by applying finite difference to Ampere’s law and
Faraday’s law. The limits of this method are not restricted to only the models presented
in Section 3.2, but instead can be used for any dispersive dielectric media where χe(ω) is
a Stieltjes function with the integral representation of the distribution of relaxation times
(DRTs) of the form defined in Ref. [80]:

χe(ω) =
∫ ∞

0

G(τ)

1 + jωτ
dτ, (19)

where G(τ) is the DRTs function [84].
Using a slightly different approach to the other ADE methods, Ref. [72] incorporated

ideas from digital filter theory. By transforming (10) into the Z domain, they derived
the following:

D(z) = ϵ0ϵr∞ E(z) + ϵ0E(z)χe(z), (20)

χe(z) becomes the transfer function from E(z) and D(z). Therefore, χe(z) must be
known. First, Ref. [72] used the fast inverse Laplace transform (FILT) to transform χe(ω)



Mathematics 2024, 12, 932 9 of 17

into the time domain at a specific time step. Then, Prony’s method [85] is used to find the
signal parameters to derive χe(z):

χe(z) =
Nl

∑
l=1

Al
1 − plz−1 +

Nk

∑
k=1

Bk − Ckz−1

1 − rkz−1 + qkz−2 , (21)

where Al , pl , Bk, Ck, rk, and qk are real values calculated using a procedure formulated
in Ref. [72], Nl is the number of real poles, and Nk is the number of complex pole pairs.
From this, the update equations can be found by using the Z-transform method [86],
thereby applying finite differences to Ampere’s law and Faraday’s law and substituting
and rearranging. Plus, the methods can be used for any dispersive dielectric media where
the inverse Laplace transform can be solved numerically. However, it is interesting that
the generalised pencil-of-function (GPOF) method is not used over Prony’s method, as it is
more computationally efficient and robust [87], which should result in a more efficient and
robust FDTD scheme. The downside is that the proposed method is more computationally
expensive compared to other ADE methods [88] and may be prone to numerical instability,
as it relies heavily on the FILT and Prony’s method, which are approximate methods.

To summarise, the ADE method eliminates the need to formulate the time-domain rep-
resentation of the fractional derivatives, meaning the application of finite differences within
the FDTD framework is easy and straightforward. Despite this advantage, the method may
require storing the field quantities for quite a few previous time steps for each Yee cell edge.
This may lead to large memory requirements and computation costs compared to methods
which approximate the time-domain fractional derivative, as they store the field quantities
relevant only to the previous time step [83]. Although dealing with fractional derivatives
leads to more complex formulations, it has been shown to be worth the effort, thereby
displaying more accurate results than those using the ADE method [22]. Furthermore, there
was limited knowledge regarding the optimum truncation point for the ADE methods,
whereas the time-domain methods have explored this, so the computational costs could be
estimated [89].

Therefore, the fractional derivative methods have the potential to be the better choice
over the ADE method. A more detailed description of how they are implemented in
the FDTD follows.

3.4. Fractional Derivatives in FDTD

Methods involving fractional derivatives in the framework of the FDTD all follow a
similar procedure, only differing in the way in which the fractional derivative is approxi-
mated. First the definition of the complex permittivity function or electric susceptibility
function is given. For example, Ref. [11] suggested a formulation for the Cole–Cole media:

χe(ω) =
ϵrs − ϵr∞

1 + (jωτ)α
. (22)

This is plugged into the relation between the auxiliary displacement current density, J,
and the time derivative of the electric field or the relation between the electric field and the
induced dielectric polarisation density, P, thereby giving the equation from Ref. [11]:

J(ω) = jωϵ0ϵr(ω)E(ω),

P(ω) = ϵ0χe(ω)E(ω).
(23)

The equation is rearranged and transformed into the time domain using the IFT.
Since the auxiliary displacement current density is needed for the update equations, meth-
ods using the relation between P and E need to differentiate both sides of the equation, as
∂P
∂t = J.

At this point, the methods differ from each other, thereby dealing with the fractional
derivative caused by the IFT in different ways.
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For example, in Ref. [11], the resulting equation is

ϵ0∆ϵ
∂E(t)

∂t
= J(t) +

∫ t

0

τα

(t′)αΓ(1 − α)

∂J(t − t′)
∂t

dt′. (24)

Discretizing the formulation using the finite difference method and expanding the
vector terms using a semiimplicit approximation [62] leads to the update equation for the
auxiliary displacement current density:

J
∣∣n+1

=
2

1 + 2C1
·
(

E
∣∣n+1 − E

∣∣n
∆t

+ (C1 −
1
2
)J
∣∣n − Gn

)
, (25)

where

C1 =
1

Γ(2 − α)

(
τ

∆t

)α(
1
2

)1−α

(26)

and

Gn = C2

n−1

∑
m=0

[
(m + 1)1−α − m1−α

]
·
[

J
∣∣n−m − J

∣∣n−m−1
]
, (27)

where

C2 =
1

Γ(2 − α)

(
τ

∆t

)α

. (28)

Due to the fractional derivative, the update of J
∣∣n+1 requires the storage of all previous

auxiliary displacement current density terms in time. Therefore, a recursive update scheme
was used with the parameters found through an optimisation technique, like least squares
for example. This approximation significantly reduces the computational memory, as
only the previous time instant, J

∣∣n, is required. The electric field update equation was
found by substitutions and rearranging Ampere’s law, with the curl of the magnetic field
approximated with the standard Yee equations.

In Ref. [69], the electric susceptibility function was defined as

χe(ω) =
ϵrs − ϵr∞

1 + ∑N
p=1 Ap(jωτ)αp

, (29)

where Ap is a real coefficient based on the material parameters. Following the same steps
as previously stated, this leads to

ϵ0∆ϵ
∂E(t)

∂t
= J(t) +

N

∑
p=1

∫ t

0

Apταp

(t′)1+αp−⌈αp⌉Γ(⌈αp⌉ − αp)

∂⌈αp⌉ J
∂t⌈αp⌉

dt′, (30)

where ⌈·⌉ is the ceiling function, meaning −1 < αp − ⌈αp⌉ < 0.
This was discretized using a second-order accurate finite-difference scheme evaluated

at t = m∆t. To solve the fractional derivative, the principle of the FDTD was used, which
assumes constant electromagnetic quantities over each time interval, ∆t, to be equal to the
value of the quantity at the centre of ∆t:
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∫ t

0

Apταp

(t′)1+αp−⌈αp⌉Γ(⌈αp⌉ − αp)

∂⌈αp⌉ J
∂t⌈αp⌉

∣∣∣∣∣
m

dt′

=
m−1

∑
k=0

∂⌈αp⌉ J
∂t⌈αp⌉

∣∣∣∣∣
m−k ∫ (k+1)∆t

k∆t

Apταp

(t′)1+αp−⌈αp⌉Γ(⌈αp⌉ − αp)
dt′

=

m−1

∑
k=0

∂⌈αp⌉ J
∂t⌈αp⌉

∣∣∣∣∣
m−k

Ap(
τ
∆t )

αp

(∆t)1−⌈αp⌉Γ(1 + ⌈αp⌉ − αp)

·
[
(k + 1)⌈αp⌉−αp − k⌈αp⌉−αp

]
.

(31)

Using a binomial expansion of the Newtonian derivative gives the following:

∂⌈αp⌉ J
∂⌈αp⌉t

∣∣∣∣∣
m

≈ 1

(∆t)⌈αp⌉

⌈αp⌉

∑
n=0

(−1)n
(
⌈αp⌉

n

)
J
∣∣m−n+ 1

2 , (32)

The update equations can be found by discretising, substituting, and rearranging
Ampere’s law, along with Faraday’s law.

In Ref. [7], the complex permittivity is approximated using a general fractional poly-
nomial series approximation:

ϵr(ω) = ϵrs
1 + ∑N

k=1 ak(jω)αk

1 + ∑M
l=1 bl(jω)βl

, (33)

where ak, αk, bl , and βl are real-valued parameters, which leads to the resulting equation [7]:

ϵ0ϵrs
∂E(t)

∂t
= J(t) +

M

∑
l=1

blD
βl
t J(t)− ϵ0ϵrs

N

∑
k=1

akD
1+αk
t E(t), (34)

where Dβl
t and D1+αk

t are the fractional derivative operators of order βl and 1 + αk, re-
spectively. The equation is discretised using a second-order finite-difference scheme and
evaluated using a semiimplicit approximation, with the discretized fractional derivatives
approximated as in Ref. [7]:

Dβl
t J
∣∣m ≈ ∆t−βl

Γ(1 + ⌈βl⌉+ βl)

⌈βl⌉

∑
r=0

[
(−1)r

(
⌈βl⌉

r

)
Sl J
∣∣m−r+ 1

2

+
Ql

∑
q=1

(−1)r
(
⌈βl⌉

r

)
e−sl,q Ψl,q

∣∣m−r
]

,

(35)

where Ψl,q is the auxiliary current density vector, Sl is a summation of coefficients, and
sl,q is a coefficient following an exponential expansion. A similar expression was obtained

for D1+αk
t E

∣∣m [7]. In short, this expression was obtained by applying the central finite-
difference approximation to the fractional derivative using the principle of FDTD in (31)
and solving the integral part of the discretized fractional derivative, Il :

Il =
∫ t

o
(t − u)⌈βl⌉−βl−1 J(u)du,

≈
m−1

∑
p=0

J
∣∣m−p− 1

2

∫ (p+1)∆t

p∆t
u⌈βl⌉−βl−1du

≈ ∆t⌈βl⌉−βl

⌈βl⌉ − βl

m−1

∑
p=0

[
(p + 1)⌈βl⌉−βl − p⌈βl⌉−βl

]
J
∣∣m−p− 1

2 ,

(36)
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where an an exponential expansion of order Ql is applied from [90]:

(p + 1)⌈βl⌉−βl − p⌈βl⌉−βl ≈
Ql

∑
q=1

rl,qe−sl,q p, (37)

with the coefficients rl,q and sl,q found by minimising a mean square error function. Now, it
can be rewritten into the form shown in (35). And from this point, the update equations
can be found.

A very similar approach is used in Refs. [7,22,70,91]. However, they differ in certain
aspects, with one being the way in which the optimum truncation point of a series approx-
imation of the denominator of the complex permittivity is found. For example, Ref. [70]
uses a truncated binomial series to approximate the complex permittivity denominator,
while Ref. [22] uses a fractional power expansion. Another difference is the method used to
calculate the coefficients in (35). While Refs. [7,70] minimise the mean square error func-
tion, Ref. [22] uses enhanced weighted quantum particle swarm optimisation (EWQPSO)
on a nonlinear minimisation function.

It should be noted that Ref. [22] reduced the computational costs of the scheme
in Ref. [70] to O(N2), as the formulation could be written in matrix form, with the inverse
of a coefficient matrix only needing to be computed once.

Thus far, the fractional derivative methods have used the Riemann–Liouville deriva-
tive due to its power law kernel. However, the Grünwald–Letnikov derivative has been
used to model Cole–Cole media [89] and Havriliak–Negami media [92]. Following Ref. [92],
they define the permittivity function as in (14), plug it into (10), and perform the IFT, thus
resulting in the equation from Ref. [92]:

Dα,β
t P(t) = ϵ0∆ϵE(t), (38)

where ∆ϵ is the numerator of the fraction in (14), and

Dα,β
t = F−1{(1 + (jωτ)α)β}, (39)

where F−1 represents the IFT. In a similar way, since there was no closed form solution
available, Dt is approximated by a sum of time fractional derivatives, like in (34):

Dα,β
t ≈ 1 +

N

∑
i=1

qi(jω)ri , (40)

where qi and ri are optimisation variables found using the Nelder–Mead nonlinear optimi-
sation algorithm [93], thus leading to the following polarisation relation [92]:

P(t) +
N

∑
i=1

qiD
ri
t P(t) = ϵ0∆ϵE(t). (41)

From this point, the Grünwald–Letnikov derivative is employed, with the rith frac-
tional derivative of the discreitized P(t) given as in Ref. [92]:

Dri
t P
∣∣n = ∆t−ri

n−1

∑
k=0

w(ri)
k P

∣∣n−k, (42)

where w(ri)
k are coefficients found using a recursive relation. However, (42) requires all

previous values of P
∣∣n to be stored, meaning the memory requirements increase with time.

To reduce this burden on the memory, the authors of Ref. [92] applied Prony’s method to
approximate w(ri)

k using a weighted sum of truncated decaying exponentials [94]:
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w(ri)
k ≈

M

∑
j=1

ai,je
−bi,j(k−1), (43)

where k ≥ 1, ai,j < 0, and bi,j > 0. Substituting (43) into (42) and again into (41) gives

P
∣∣n + N

∑
i=1

qi∆t−ri
(

P
∣∣n + M

∑
j=1

vn
i,j

)
= ϵ0∆ϵE

∣∣n, (44)

where vn
i,j are the auxiliary vectors. So, only N · M auxiliary vectors need to be stored in

the memory, and the fact that they can be computed recursively means that the memory
requirements are heavily reduced. From this, the update equation for the polarisation
density can be found. And discretizing Ampere’s law and Faraday’s law gives the electric
field and magnetic field update equations, respectively. It is important to note that there is
no mention of the numerical stability of the method. Regardless, the method showed good
agreement between the estimated and analytical solutions over a wide frequency range of
the reflection coefficient and transfer function.

To evaluate the effectiveness of the fractional representation of complex permittivity
functions as outlined in (33) and the corresponding fractional FDTD algorithms, a compari-
son with the Padé approximation model (21) that is used in traditional FDTD approaches,
like the ADE and Z-transform methods, was conducted in Ref. [22]. This benchmarking re-
vealed that the formulations based on fractional derivatives enable a significantly enhanced
numerical accuracy. Moreover, unlike the Padé approximation, they lead to more compact
representations of permittivity functions. This results in notable advantages, including
accelerated convergence rates, reduced memory usage, and simplified integration into the
framework of existing FDTD codes.

4. Conclusions

This study has presented an in-depth analysis of the electromagnetic modelling of
dispersive materials using the FDTD technique, thereby focusing on three prominent
methodologies: the ADE, the Z-transform, and fractional derivative-based methods. Each
of these techniques provides a unique framework for accurately modelling the complex
frequency-dependent behaviour of dispersive materials, which is crucial for the design and
analysis of electromagnetic devices and systems.

The ADE method facilitates the incorporation of material dispersion by coupling
Maxwell’s equations with additional differential equations that describe the material’s
polarisation response. However, the main drawbacks of the ADE method include its
complexity in formulating the auxiliary equations for different types of dispersive ma-
terials and the potential for numerical instability under certain simulation conditions.
These limitations can lead to increased computational resources and longer simulation
times, particularly for materials with arbitrary dispersive properties.

Similarly, the Z-transform approach offers a powerful technique to model dispersive
materials by converting the time-domain FDTD equations into the Z domain, thereby
allowing for the direct incorporation of material dispersion into the FDTD grid. Despite its
effectiveness, the Z-transform method is criticised for its inherent approximation errors
and the need for inverse Z-transform to return to the time domain, which can introduce
inaccuracies in the simulation results.

In contrast, fractional derivative-based methods emerge as a superior alternative
for modelling dispersive materials in FDTD simulations. These methods leverage the
concept of fractional calculus to more accurately represent the power law behaviour of
material dispersion over a wide frequency range. The benefits of fractional derivative-based
methods are manifold. Firstly, they offer a more generalised framework that can be applied
to a broad spectrum of dispersive materials without the need for material-specific auxiliary
equations. This universality significantly simplifies the modelling process and reduces the
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setup time for simulations. Secondly, fractional derivative-based methods have been shown
to produce more accurate results when compared to traditional integer-order differential
equations, especially in capturing the long tail effects of material dispersion. This accuracy
is paramount in applications where precise electromagnetic behaviour prediction is critical.
Thirdly, these methods exhibit better stability and efficiency in numerical simulations,
thereby enabling faster convergence and reduced computational overhead.

In summary, while the ADE and Z-transform methods have played a pivotal role in
advancing the electromagnetic modelling of dispersive materials, the fractional derivative-
based approach offers a promising pathway forward. Its ability to deliver higher accuracy,
efficiency, and stability in FDTD simulations makes it an appealing choice for tackling the
complex challenges associated with the electromagnetic response of dispersive materials.
Future research should focus on further refining fractional derivative models, exploring
their integration with more advanced higher-order FDTD schemes, and extending their
application to a wider range of electromagnetic phenomena.

The fractional derivative-based techniques presented herein offer a versatile tool for
tackling complex electromagnetic challenges in bioengineering and remote sensing. They
enable the study of pulse wave propagation and biological processes, including electropo-
ration within the human body. Additionally, these methods find application in the domain
of ground-penetrating radar, thereby facilitating the investigation of electromagnetic scat-
tering by objects, such as utilities and landmines buried in realistic multilayered dispersive
soils.
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