New Criteria for Oscillation of Advanced Noncanonical Nonlinear Dynamic Equations
Abstract
:1. Introduction
2. Criteria for Oscillation (1) when
- (a)
- eventually;
- (b)
- eventually.
- (a)
- eventually;
- (b)
- eventually.
3. Criteria for Oscillation (1) when
- (a)
- eventually;
- (b)
- eventually.
- (a)
- eventually;
- (b)
- eventually.
4. Discussion and Conclusions
- (1)
- The findings presented in this research are applicable to all time scales without any restriction conditions, such as: with , with , etc. (see [5]).
- (2)
- (3)
- It would be interesting to develop conditions for half-linear noncanonical dynamic equations of the form
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Mao, Z.X.; Liu, S.P.; Tian, J.F. Oscillation criteria of second-order dynamic equations on time scales. Mathematics 2021, 9, 1867. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Jadlovská, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Differ. Equ. 2017, 2017, 1–11. [Google Scholar]
- Bohner, M.; Vidhyaa, K.S.; Thandapani, E. Oscillation of noncanonical second-order advanced differential equations via canonical transform. Constr. Math. Anal. 2022, 5, 7–13. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Equ. 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Řezníčková, J. Hille-Nehari type oscillation and nonoscillation criteria for linear and half-linear differential equations. MATEC Web Conf. 2019, 292, 01061. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments. Mathematics 2021, 9, 2552. [Google Scholar] [CrossRef]
- Demidenko, G.V.; Matveeva, I.I. Asymptotic stability of solutions to a class of second-order delay differential equations. Mathematics 2021, 9, 1847. [Google Scholar] [CrossRef]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 1973, 189, 319–327. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dynam. Sys. Theory 2009, 9, 51–68. [Google Scholar]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional nonlinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended criteria of oscillation for nonlinear functional dynamic equations of second-order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Hassan, T.S.; Cesarano, C.; El-Nabulsi, R.A.; Anukool, W. Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations. Mathematics 2022, 10, 3675. [Google Scholar] [CrossRef]
- Řehák, P. A critical oscillation constant as a variable of time scales for half-linear dynamic equations. Math. Slovaca 2010, 60, 237–256. [Google Scholar] [CrossRef]
- Yang, X. A note on oscillation and nonoscillation for second-order linear differential equation. J. Math. Anal. Appl. 1999, 238, 587–590. [Google Scholar] [CrossRef]
- Fišnarová, S.; Pátíková, Z. Hille–Nehari type criteria and conditionally oscillatory half-linear differential equations. Electron. J. Qual. Theory 2019, 2019, 1–22. [Google Scholar] [CrossRef]
- Hassan, T.S.; Bohner, M.; Florentina, I.L.; Abdel Menaem, A.; Mesmouli, M.B. New Criteria of oscillation for linear Sturm–Liouville delay noncanonical dynamic equations. Mathematics 2023, 11, 4850. [Google Scholar] [CrossRef]
- Li, T.; Saker, S.H. A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4185–4188. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Elsgolts, L.E.; Norkin, S.B. Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Grace, S.R.; Graef, J.R.; Tunco, E. Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments. Acta Math. Univ. Comen. 2022, 91, 113–120. [Google Scholar]
- Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders; Lap Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; El-Nabulsi, R.A.; Iqbal, N.; Abdel Menaem, A. New Criteria for Oscillation of Advanced Noncanonical Nonlinear Dynamic Equations. Mathematics 2024, 12, 824. https://doi.org/10.3390/math12060824
Hassan TS, El-Nabulsi RA, Iqbal N, Abdel Menaem A. New Criteria for Oscillation of Advanced Noncanonical Nonlinear Dynamic Equations. Mathematics. 2024; 12(6):824. https://doi.org/10.3390/math12060824
Chicago/Turabian StyleHassan, Taher S., Rami Ahmad El-Nabulsi, Naveed Iqbal, and Amir Abdel Menaem. 2024. "New Criteria for Oscillation of Advanced Noncanonical Nonlinear Dynamic Equations" Mathematics 12, no. 6: 824. https://doi.org/10.3390/math12060824
APA StyleHassan, T. S., El-Nabulsi, R. A., Iqbal, N., & Abdel Menaem, A. (2024). New Criteria for Oscillation of Advanced Noncanonical Nonlinear Dynamic Equations. Mathematics, 12(6), 824. https://doi.org/10.3390/math12060824