Existence and Uniqueness of Weak Solutions to Frictionless-Antiplane Contact Problems
Abstract
1. Introduction
2. Preliminaries
3. Formulation of the Problem
4. Variational Formulation
5. Existence and Uniqueness Result
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dosaev, M.; Samsonov, V.; Bekmemetev, V. Comparison between 2D and 3D simulation of contact of two deformable axisymmetric bodies. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 123–133. [Google Scholar] [CrossRef]
- Fernandez, F.; Puso, M.A.; Solberg, J.; Tortorelli, D.A. Topology optimization of multiple deformable bodies in contact with large deformations. Comput. Methods Appl. Mech. Eng. 2020, 371, 113288. [Google Scholar] [CrossRef]
- Biber, S.W.; Champneys, A.R.; Szalai, R. Analysis of point-contact models of the bounce of a hard spinning ball on a compliant frictional surface. IMA J. Appl. Math. 2023, 88, 498–523. [Google Scholar] [CrossRef]
- Shaat, M.; Gao, X.-L.; Li, K.; Littlefield, A.G. New analytical model for thermomechanical responses of multi-layered structures with imperfect interfaces. Acta Mech. 2023, 234, 5779–5818. [Google Scholar] [CrossRef]
- Duvaut, G.; Lions, J.-L. Les Inéquations en Mécanique et en Physique; Dunod: Paris, France, 1972. [Google Scholar]
- Lions, J.-L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires; Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Rakici, S.; Kim, J. A stabilized non-ordinary peridynamic model for linear piezoelectricity. Appl. Math. Model. 2024, 125, 514–538. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X. On uniqueness of recovering coefficients from localized Dirichlet-to-Neumann map for piecewise homogeneous piezoelectricity. SIAM J. Math. Anal. 2023, 55, 571–602. [Google Scholar] [CrossRef]
- Benaissa, H.; Essoufi, E.-H.; Fakhar, R. Existence results for unilateral contact problem with friction of thermo-electro-elasticity. Appl. Math. Mech. 2015, 36, 911–926. [Google Scholar] [CrossRef]
- Benaissa, H.; Essoufi, E.-H.; Fakhar, R. Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity. Glas. Mat. Ser. III 2016, 51, 391–411. [Google Scholar] [CrossRef]
- Ammar, T.H. Quasistatic contact problem between thermo-electroelastic bodies with long-term memory and adhesion. Malaya J. Mat. 2016, 4, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Sládek, J.; Sládek, V.; Stanak, P. Analysis of thermo-piezoelectricity problems by meshless method. Acta Mech. Slovaca 2010, 14, 16–27. [Google Scholar] [CrossRef]
- Tiersten, H.F. On the nonlinear equations of thermoelectroelasticity. Internat. J. Engrg. Sci. 1971, 9, 587–604. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Boutechebak, S. Analysis of a dynamic thermo-elastic-viscoplastic contact problem. Electron. J. Qual. Theory Differ. Equ. 2013, 2013, 17. [Google Scholar] [CrossRef]
- Merouani, A.; Messelmi, F. Dynamic evolution of damage in elastic-thermo-viscoplastic materials. Electron. Differ. Equ. 2010, 2010, 1–15. [Google Scholar]
- Sofonea, M. Functional Methods in Thermo-Elasto-Visco-Plasticity. Ph.D. Thesis, University of Bucharest, Bucharest, Romania, 1988. [Google Scholar]
- Adly, S.; Chau, O. On some dynamic thermal non clamped contact problems. Math. Program. 2013, 139, 5–26. [Google Scholar] [CrossRef]
- Andrews, K.T.; Shillor, M.; Wright, S.; Klarbring, A. A dynamic thermoviscoelastic contact problem with friction and wear. Internat. J. Engrg. Sci. 1997, 35, 1291–1309. [Google Scholar] [CrossRef]
- Dalah, M. Analysis of electro-viscoelastic antiplane contact problem with total slip rate dependent friction. Electron. J. Differ. Equ. 2009, 2009, 15. [Google Scholar]
- Dalah, M.; Sofonea, M. Antiplane frictional contact of electro-viscoelastic cylinders. Electron. J. Differ. Equ. 2007, 2007, 14. [Google Scholar]
- Matei, A.; Motreanu, V.V.; Sofonea, M. A quasistatic antiplane contact problem with slip dependent friction. Adv. Nonlinear Var. Inequal. 2001, 4, 1–21. [Google Scholar]
- Mindlin, R.D. Polarization gradient in elastic dielectrics. Int. J. Solids Structures 1968, 4, 637–642. [Google Scholar] [CrossRef]
- Rachid, C.; Nemira, L. Analysis of a thermo-viscoelastic antiplane contact problem with long-term memory. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2021, 67, 97–111. [Google Scholar] [CrossRef]
- Sofonea, M.; Dalah, M.; Ayadi, A. Analysis of an antiplane electro-elastic contact problem. Adv. Math. Sci. Appl. 2007, 17, 385–400. [Google Scholar]
- Sofonea, M.; Matei, A. Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Horgan, C.O. Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Rev. 1995, 37, 53–81. [Google Scholar] [CrossRef]
- Horgan, C.O.; Miller, K.L. Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids. Trans. ASME J. Appl. Mech. 1994, 61, 23–29. [Google Scholar] [CrossRef]
- Han, W.; Sofonea, M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity; American Mathematical Society: Providence, RI, USA; RIInternational Press: Somerville, MA, USA, 2002. [Google Scholar]
- Shillor, M.; Sofonea, M.; Telega, J.J. Models and Analysis of Quasistatic Contact: Variational Methods; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications; II/A; Springer: New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadlia, B.; Dalah, M.; Torres, D.F.M. Existence and Uniqueness of Weak Solutions to Frictionless-Antiplane Contact Problems. Mathematics 2024, 12, 434. https://doi.org/10.3390/math12030434
Fadlia B, Dalah M, Torres DFM. Existence and Uniqueness of Weak Solutions to Frictionless-Antiplane Contact Problems. Mathematics. 2024; 12(3):434. https://doi.org/10.3390/math12030434
Chicago/Turabian StyleFadlia, Besma, Mohamed Dalah, and Delfim F. M. Torres. 2024. "Existence and Uniqueness of Weak Solutions to Frictionless-Antiplane Contact Problems" Mathematics 12, no. 3: 434. https://doi.org/10.3390/math12030434
APA StyleFadlia, B., Dalah, M., & Torres, D. F. M. (2024). Existence and Uniqueness of Weak Solutions to Frictionless-Antiplane Contact Problems. Mathematics, 12(3), 434. https://doi.org/10.3390/math12030434