On Lp-Boundedness Properties and Parseval–Goldstein-Type Theorems for a Lebedev-Type Index Transform
Abstract
:1. Introduction and Preliminaries
2. Parseval–Goldstein-Type Relations for the Lebedev-Type Index Transform
2.1. The Transform over the Space
- (i)
- (ii)
2.2. The Transform over the Space
- (i)
- (ii)
- (iii)
2.3. Parseval–Goldstein-Type Theorems
3. -Boundedness Properties for the Lebedev-Type Index Transform
- (i)
- (ii)
- (i)
- Using Hölder’s inequality, we arrive at
- (ii)
4. Weighted Inequalities for the Lebedev-Type Index Transform
- (i)
- (ii)
- Following the same technique as the above for , the given by (8) is bounded from into .
- (i)
- For ,
- (ii)
- For ,
5. Final Observations and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yakubovich, S.B. Index Transforms; World Scientific Publishing Company: Singapore, 1996. [Google Scholar]
- Lebedev, N.N. On the representation of an arbitrary function by the integrals involving square of the Macdonald functions with the imaginary index. Siberian Math. J. 1962, 3, 213–222. (In Russian) [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Zemanian, A.H. Generalized Integral Transformations; Series on Pure and Applied Mathematics; Interscience Publishers/Wiley: Hoboken, NJ, USA, 1968; Volume 18. [Google Scholar]
- Yürekli, O. A Parseval-type Theorem Applied to Certain Integral Transforms. IMA J. Appl. Math. 1989, 42, 241–249. [Google Scholar] [CrossRef]
- Yürekli, O. A theorem on the generalized Stieltjes transform. J. Math. Anal. Appl. 1992, 168, 63–71. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Parseval-Goldstein type identities involving the L4-transform and the P4-transform and their applications. Integral Transforms Spec. Funct. 2007, 18, 397–408. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Some Parseval-Goldstein type identities involving the FS,2-transform, the FC,2-transform and the P4-transform and their applications. Appl. Math. Comput. 2008, 202, 327–337. [Google Scholar]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the Kontorovich-Lebedev transform and the Mehler-Fock transform of general order. Filomat 2024, 38, 6691–6701. [Google Scholar]
- Yakubovich, S.B. On the generalized Lebedev index transform. J. Math. Anal. Appl. 2015, 429, 184–203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; Maan, J. On Lp-Boundedness Properties and Parseval–Goldstein-Type Theorems for a Lebedev-Type Index Transform. Mathematics 2024, 12, 3907. https://doi.org/10.3390/math12243907
Negrín ER, Maan J. On Lp-Boundedness Properties and Parseval–Goldstein-Type Theorems for a Lebedev-Type Index Transform. Mathematics. 2024; 12(24):3907. https://doi.org/10.3390/math12243907
Chicago/Turabian StyleNegrín, Emilio R., and Jeetendrasingh Maan. 2024. "On Lp-Boundedness Properties and Parseval–Goldstein-Type Theorems for a Lebedev-Type Index Transform" Mathematics 12, no. 24: 3907. https://doi.org/10.3390/math12243907
APA StyleNegrín, E. R., & Maan, J. (2024). On Lp-Boundedness Properties and Parseval–Goldstein-Type Theorems for a Lebedev-Type Index Transform. Mathematics, 12(24), 3907. https://doi.org/10.3390/math12243907