Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
Abstract
:1. Introduction
- Question: Under the assumptions imposed on in [25], does the operator satisfy the boundedness if and with ?
- (i)
- If for some , then we have
- (ii)
- If , then we have
2. Preliminary Lemmas
3. Proof of the Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y. A note on a class of rough maximal operators on product domains. J. Math. Anal. Appl. 1999, 232, 222–228. [Google Scholar] [CrossRef]
- Al-Salman, A. Maximal operators with rough kernels on product domains. J. Math. Anal. Appl. 2005, 311, 338–351. [Google Scholar] [CrossRef]
- Al-Qassem, H. Lp estimates for a rough maximal operator on product spaces. J. Korean Math. Soc. 2005, 42, 405–434. [Google Scholar] [CrossRef]
- Xu, H.; Fan, D.; Wang, M. Some maximal operators related to families of singular integral operators. Acta. Math. Sin. 2004, 20, 441–452. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Cheng, L.; Pan, P. On the boundedness of a class of rough maximal operators on product spaces. Hokkaido Math. J. 2011, 40, 1–32. [Google Scholar] [CrossRef]
- Fan, D.; Pan, Y. Boundedness of certain oscillatory singular integrals. Studia Math. 1995, 114, 105–116. [Google Scholar] [CrossRef]
- Kim, W.; Wainger, S.; Wright, J.; Ziesler, S. Singular Integrals and Maximal Functions Associated to Surfaces of Revolution. Bull. Lond. Math. Soc. 1996, 28, 291–296. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, S. Oscillatory singular integrals with rough kernel. In Harmonic Analysis in China; Cheng, M.D., Deng, D.G., Gong, S., Yang, C.-C., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1995; Volume 327, pp. 135–145. [Google Scholar]
- Stein, E. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 1958, 88, 430–466. [Google Scholar] [CrossRef]
- Stein, E. Problems in harmonic analysis related to curvature and oscillatory integrals. Proc. Internat. Congr. Math. 1986, 1, 196–221. [Google Scholar]
- Stein, E. Some geometrical concepts arising in harmonic analysis. Geom. Funct. Anal. 2000, 434–453. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y. Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels. Rev. Mat. Iber. 1992, 8, 201–219. [Google Scholar]
- Pan, P. L2 estimates for convolution operators with oscillating kernels. Math. Proc. Camb. Phil. Soc. 1993, 113, 179–193. [Google Scholar] [CrossRef]
- Ricci, F.; Stein, E. Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. J. Func. Anal. 1987, 73, 179–194. [Google Scholar] [CrossRef]
- Sjolin, P. Convolution with oscillating kernels. Indiana Univ. Math. J. 1981, 30, 47–55. [Google Scholar] [CrossRef]
- Chen, L.; Lin, H. A maximal operator related to a class of singular integral. Illinois J. Math. 1990, 34, 120–126. [Google Scholar] [CrossRef]
- Al-Salman, A. On maximal functions with rough kernels in L(logL)1/2(Sn-1). Collec. Math. 2005, 56, 47–56. [Google Scholar]
- Al-Qassem, H. On the boundedness of maximal operators and singular operators with kernels in L(logL)α(Sm-1). J. Ineq. Apll. 2006, 1, 1–16. [Google Scholar]
- Jiang, Y.; Lu, S. A class of singular integral operators with rough kernel on product domains. Hokkaido Math. J. 1995, 24, 1–7. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Pan, Y. Singular integrals along surfaces of revolution with rough kernels. SUT J. Math. 2003, 39, 55–70. [Google Scholar] [CrossRef]
- Ding, Y.; He, Q. Weighted boundedness of a rough maximal operator. Acta Math. Sci. (Engl. Ed.) 2000, 20, 417–422. [Google Scholar] [CrossRef]
- Le, H. Maximal operators and singular integral operators along submanifolds. J. Math. Anal. Appl. 2004, 296, 44–64. [Google Scholar] [CrossRef]
- Duoandikoetxea, J.; Rubio de Francia, J. Maximal and singular integral operators via Fourier transform estimates. Invent Math. 1986, 84, 541–561. [Google Scholar] [CrossRef]
- Ali, M.; Al-Mohammed, O. Boundedness of a class of rough maximal functions. J. Ineq. Appl. 2018, 2018, 305. [Google Scholar] [CrossRef] [PubMed]
- Al-Qassem, H.; Cheng, L.; Pan, Y. On singular integrals and maximal operators along surfaces of revolution on product domains. J. Math. Ineq. 2023, 17, 739–759. [Google Scholar] [CrossRef]
- Yano, S. Notes on Fourier analysis. XXIX. An extrapolation theorem. J. Math. Soc. Jpn. 1951, 3, 296–305. [Google Scholar] [CrossRef]
- Sato, S. Estimates for singular integrals and extrapolation. Studia Math. 2009, 192, 219–233. [Google Scholar] [CrossRef]
- Carbery, A.; Wainger, S.; Wright, J. Double Hilbert transforms along polynomial surfaces in R3. Duke Math. J. 2000, 101, 499–513. [Google Scholar] [CrossRef]
- Carlsson, H.; Sjōgren, P. Estimates for maximal functions along hypersurfaces. Ark. Math. 1987, 25, 1–14. [Google Scholar] [CrossRef]
- Carlsson, H.; Sjōgren, P.; Stromberg, J. Multiparameter maximal functions along dilationinvariant hypersurfaces. Trans. Am. Math. Soc. 1985, 292, 335–343. [Google Scholar] [CrossRef]
- Duoandikoetxea, J. Multiple singular integrals and maximal functions along hypersurfaces. Ann. Ins. Four. 1986, 36, 185–206. [Google Scholar] [CrossRef]
- Fan, D.; Guo, K.; Pan, Y. Singular integrals with rough kernels on product spaces. Hokkaido Math. J. 1999, 28, 435–460. [Google Scholar] [CrossRef]
- Le, H. A note on singular integrals with dominating mixed smoothness in Triebel-Lizorkinspaces. Acta Math. Scientia. 2014, 34, 1331–1344. [Google Scholar] [CrossRef]
- Patel, S. Double Hilbert Transforms along Polynomial Surfaces in R3. Glasgow Math. J. 2008, 50, 395–428. [Google Scholar] [CrossRef]
- Stein, E. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Benedek, A.; Panzone, R. The spaces Lp with mixed norm. Duke Math. J. 1961, 28, 301–324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Al-Qassem, H. Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains. Mathematics 2024, 12, 193. https://doi.org/10.3390/math12020193
Ali M, Al-Qassem H. Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains. Mathematics. 2024; 12(2):193. https://doi.org/10.3390/math12020193
Chicago/Turabian StyleAli, Mohammed, and Hussain Al-Qassem. 2024. "Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains" Mathematics 12, no. 2: 193. https://doi.org/10.3390/math12020193
APA StyleAli, M., & Al-Qassem, H. (2024). Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains. Mathematics, 12(2), 193. https://doi.org/10.3390/math12020193