Hybrid Quantum Neural Network Approaches to Protein–Ligand Binding Affinity Prediction
Abstract
:1. Introduction
- A classical 1D convolutional neural network (CNN) is proposed to extract protein and ligands features effectively. This does not predicate prior knowledge of complex structures and learn the characteristics of entities in parallel.
- A classical model is proposed to predict binding affinity.
- Three quantum regression modules (Variational Quantum Regression—VQR) combined effectively with the classical 1D CNN to predict binding affinity.
- An integrated framework for implementing and evaluating classical and QML models.
2. Related Work—Preliminaries
2.1. Deep Learning in Prediction of Binding Affinity
2.2. Quantum Neural Networks
2.2.1. General Field
2.2.2. Drug Discovery
2.3. Preliminaries
3. Materials and Methods
3.1. Overall Framework
3.2. Datasets
3.3. Input Representation
3.4. Architecture of the Models
3.4.1. Feature Extraction Module
3.4.2. Fusion Module
3.4.3. Classical Prediction Module
3.4.4. Quantum Prediction Module
3.5. Evaluation Metrics
4. Experiment—Results
4.1. Normalization in Regression Prediction Module
4.2. Model Training
4.3. Choose Classical Feature Extraction Module
4.4. Hybrid Quantum–Classical Models
4.5. Classical Models
4.6. Complexity
4.7. Gates and Depth of Quantum Modules
4.8. Evaluation on Training and Validation Datasets
4.9. Evaluation on Test Datasets
Model | Parameters of Prediction Module | MSE (↓) | RMSE (↓) | MAE (↓) | R (↑) | CI (↑) | SD (↓) |
---|---|---|---|---|---|---|---|
C5-DTA | 263,169 | 0.0116 | 0.1077 | 0.0888 | 0.6075 | 0.7210 | 0.0957 |
C5-DTA-mc | 41,217 | 0.0108 | 0.1041 | 0.0852 | 0.6092 | 0.7209 | 0.0955 |
C5-DTA-lc | 4256 | 0.0132 | 0.1151 | 0.0906 | 0.6077 | 0.7177 | 0.0957 |
HQ-DTA-amQE-8 | 72 | 0.0114 | 0.1068 | 0.0854 | 0.6168 | 0.7180 | 0.0949 |
HQ-DTA-anQE-8 | 2304 | 0.0106 | 0.1028 | 0.0851 | 0.6275 | 0.7219 | 0.0939 |
HQ-DTA-danQE-8 | 1152 | 0.0115 | 0.1073 | 0.0890 | 0.5838 | 0.7100 | 0.0978 |
HQ-DTA-anQE-4 | 2304 | 0.0109 | 0.1045 | 0.0870 | 0.5984 | 0.7172 | 0.0965 |
HQ-DTA-danQE-4 | 1152 | 0.0119 | 0.1092 | 0.0897 | 0.5999 | 0.7146 | 0.0964 |
Model | Parameters of Prediction Module | MSE (↓) | RMSE (↓) | MAE (↓) | R (↑) | CI (↑) | SD (↓) |
---|---|---|---|---|---|---|---|
C5-DTA | 263,169 | 0.0066 | 0.0813 | 0.0684 | 0.4869 | 0.6600 | 0.0801 |
C5-DTA-mc | 41,217 | 0.0065 | 0.0810 | 0.0684 | 0.4796 | 0.6532 | 0.0805 |
C5-DTA-lc | 4256 | 0.0138 | 0.1178 | 0.0930 | 0.3625 | 0.6205 | 0.0855 |
HQ-DTA-amQE-8 | 72 | 0.0076 | 0.0874 | 0.0746 | 0.3984 | 0.6149 | 0.0842 |
HQ-DTA-anQE-8 | 2304 | 0.0066 | 0.0810 | 0.0676 | 0.4788 | 0.6544 | 0.0806 |
HQ-DTA-danQE-8 | 1152 | 0.0088 | 0.0938 | 0.0815 | 0.2900 | 0.5861 | 0.0878 |
HQ-DTA-anQE-4 | 2304 | 0.0062 | 0.0790 | 0.0653 | 0.5143 | 0.6694 | 0.0787 |
HQ-DTA-danQE-4 | 1152 | 0.0069 | 0.0831 | 0.0661 | 0.4678 | 0.6431 | 0.0811 |
4.10. Execution Time
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Mofidifar, S.; Sohraby, F.; Bagheri, M.; Aryapour, H. Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: A computer-aided drug discovery study. Biogerontology 2018, 19, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Ou-Yang, L.; Xie, H.; Zhu, M.; Yan, H. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods. Comput. Struct. Biotechnol. J. 2020, 18, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Zhu, M.; Yan, H. Computationally predicting binding affinity in protein–ligand complexes: Free energy-based simulations and machine learning-based scoring functions. Brief. Bioinform. 2021, 22, bbaa107. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.J.; Mitchell, J.B. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Shar, P.A.; Tao, W.; Gao, S.; Huang, C.; Li, B.; Zhang, W.; Shahen, M.; Zheng, C.; Wang, Y. Pred-binding: Large-scale protein–ligand binding affinity prediction. J. Enzym. Inhib. Med. Chem. 2016, 31, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.K.; Singh, K. A review on conventional machine learning vs deep learning. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Yu, J.L.; Dai, Q.Q.; Li, G.B. Deep learning in target prediction and drug repositioning: Recent advances and challenges. Drug Discov. Today 2022, 27, 1796–1814. [Google Scholar] [CrossRef]
- Cang, Z.; Wei, G.W. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput. Biol. 2017, 13, e1005690. [Google Scholar] [CrossRef] [PubMed]
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 2018, 34, 3666–3674. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, R.; Li, Y.; Li, M. DeepDTAF: A deep learning method to predict protein–ligand binding affinity. Brief. Bioinform. 2021, 22, bbab072. [Google Scholar] [CrossRef] [PubMed]
- Ganapathiraju, M.K.; Klein-Seetharaman, J.; Balakrishnan, N.; Reddy, R. Characterization of protein secondary structure. IEEE Signal Process. Mag. 2004, 21, 78–87. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, L.; Liu, Y.; Qu, Y.; Li, Y.Q.; Zhao, M.; Mu, Y.; Li, W. OnionNet-2: A convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Front. Chem. 2021, 9, 753002. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Duan, Y.; Huang, Y. A point cloud-based deep learning strategy for protein–ligand binding affinity prediction. Brief. Bioinform. 2022, 23, bbab474. [Google Scholar] [CrossRef]
- Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep drug–target binding affinity prediction. Bioinformatics 2018, 34, i821–i829. [Google Scholar] [CrossRef]
- Rezaei, M.A.; Li, Y.; Wu, D.; Li, X.; Li, C. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 19, 407–417. [Google Scholar] [CrossRef]
- Abbasi, K.; Razzaghi, P.; Poso, A.; Amanlou, M.; Ghasemi, J.B.; Masoudi-Nejad, A. DeepCDA: Deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 2020, 36, 4633–4642. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021, 37, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Chen, G.; Chen, C.Y.C. FusionDTA: Attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction. Brief. Bioinform. 2022, 23, bbab506. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Song, X.; Feng, Z.; Wu, X. MFR-DTA: A multi-functional and robust model for predicting drug-target binding affinity and region. Bioinformatics 2023, 39, btad056. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wu, T.; Chen, T.; Pan, D.; Wang, X.; Xie, J.; Quan, L.; Lyu, Q. CAPLA: Improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Bioinformatics 2023, 39, btad049. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, L.; Wen, N.; Wang, J.; Wang, C. DataDTA: A multi-feature and dual-interaction aggregation framework for drug–target binding affinity prediction. Bioinformatics 2023, 39, btad560. [Google Scholar] [CrossRef] [PubMed]
- Kak, S.C. Quantum neural computing. Adv. Imaging Electron Phys. 1995, 94, 259–313. [Google Scholar]
- Smith, G.D.; Steele, N.C.; Albrecht, R.F.; Ventura, D.; Martinez, T. An artificial neuron with quantum mechanical properties. In Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference in Norwich, UK, 1997; Springer: Vienna, Austria, 1998; pp. 482–485. [Google Scholar]
- Zhou, R.; Qin, L.; Jiang, N. Quantum perceptron network. In Artificial Neural Networks–ICANN 2006: 16th International Conference, Athens, Greece, 10–14 September 2006; Proceedings, Part I 16; Springer: Berlin/Heidelberg, Germany, 2006; pp. 651–657. [Google Scholar]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013, arXiv:1307.0411. [Google Scholar]
- Wiebe, N.; Kapoor, A.; Svore, K.M. Quantum deep learning. arXiv 2014, arXiv:1412.3489. [Google Scholar] [CrossRef]
- Matsui, N.; Takai, M.; Nishimura, H. A network model based on qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. (Part III Fundam. Electron. Sci.) 2000, 83, 67–73. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, R.J.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Tacchino, F.; Macchiavello, C.; Gerace, D.; Bajoni, D. An artificial neuron implemented on an actual quantum processor. NPJ Quantum Inf. 2019, 5, 26. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.H.; Shao, C.P.; Wu, Y.C.; Guo, G.C.; Guo, G.P. Building quantum neural networks based on a swap test. Phys. Rev. A 2019, 100, 012334. [Google Scholar] [CrossRef]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273–1278. [Google Scholar] [CrossRef]
- Pesah, A.; Cerezo, M.; Wang, S.; Volkoff, T.; Sornborger, A.T.; Coles, P.J. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 2021, 11, 041011. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, X.S. QDNN: Deep neural networks with quantum layers. Quantum Mach. Intell. 2021, 3, 15. [Google Scholar] [CrossRef]
- Huang, H.Y.; Kueng, R.; Preskill, J. Information-Theoretic Bounds on Quantum Advantage in Machine Learning. Phys. Rev. Lett. 2021, 126, 190505. [Google Scholar] [CrossRef]
- Huang, H.Y.; Broughton, M.; Cotler, J.; Chen, S.; Li, J.; Mohseni, M.; Neven, H.; Babbush, R.; Kueng, R.; Preskill, J.; et al. Quantum advantage in learning from experiments. Science 2022, 376, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Xiao, T.; Zhai, X.; Wu, X.; Fan, J.; Zeng, G. Practical advantage of quantum machine learning in ghost imaging. Commun. Phys. 2023, 6, 171. [Google Scholar] [CrossRef]
- Qu, Z.; Li, Y.; Tiwari, P. QNMF: A quantum neural network based multimodal fusion system for intelligent diagnosis. Inf. Fusion 2023, 100, 101913. [Google Scholar] [CrossRef]
- Forestano, R.T.; Comajoan Cara, M.; Dahale, G.R.; Dong, Z.; Gleyzer, S.; Justice, D.; Kong, K.; Magorsch, T.; Matchev, T.K.; Matcheva, K.; et al. A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks. Axioms 2024, 13, 160. [Google Scholar] [CrossRef]
- Li, J.; Alam, M.; Congzhou, M.S.; Wang, J.; Dokholyan, N.V.; Ghosh, S. Drug discovery approaches using quantum machine learning. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 5–9 December 2021; pp. 1356–1359. [Google Scholar]
- Li, J.; Topaloglu, R.O.; Ghosh, S. Quantum generative models for small molecule drug discovery. IEEE Trans. Quantum Eng. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Sagingalieva, A.; Kordzanganeh, M.; Kenbayev, N.; Kosichkina, D.; Tomashuk, T.; Melnikov, A. Hybrid quantum neural network for drug response prediction. Cancers 2023, 15, 2705. [Google Scholar] [CrossRef]
- Domingo, L.; Djukic, M.; Johnson, C.; Borondo, F. Binding affinity predictions with hybrid quantum-classical convolutional neural networks. Sci. Rep. 2023, 13, 17951. [Google Scholar] [CrossRef]
- Avramouli, M.; Savvas, I.K.; Vasilaki, A.; Garani, G. Unlocking the potential of quantum machine learning to advance drug discovery. Electronics 2023, 12, 2402. [Google Scholar] [CrossRef]
- Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing protein–ligand interaction scoring functions. Acc. Chem. Res. 2017, 50, 302–309. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Zardecki, C. RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019, 47, D464–D474. [Google Scholar] [CrossRef]
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 2018, 9, 4812. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Salinas, A.; Cervera-Lierta, A.; Gil-Fuster, E.; Latorre, J.I. Data re-uploading for a universal quantum classifier. Quantum 2020, 4, 226. [Google Scholar] [CrossRef]
- Schuld, M.; Sweke, R.; Meyer, J.J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 2021, 103, 032430. [Google Scholar] [CrossRef]
- LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 2020, 102, 032420. [Google Scholar] [CrossRef]
- Chesher, D. Evaluating assay precision. Clin. Biochem. Rev. 2008, 29 (Suppl. S1), S23. [Google Scholar]
- Ketkar, N.; Moolayil, J.; Ketkar, N.; Moolayil, J. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, 2nd ed.; Apress: Berkeley, CA, USA, 2020. [Google Scholar]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Killoran, N. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, É. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
RX(θ) | RY(θ) | RZ(θ) | CNOT | |
---|---|---|---|---|
Matrix | ||||
Notation |
Dataset | Source | Protein–Ligand Complexes | Samples | |||
---|---|---|---|---|---|---|
Original | Final | Training | Validation | Test | ||
General [51] | PDBbind | 13,283 | 9221 | 9221 | 0 | 0 |
Refined [51] | PDBbind | 4057 | 3685 | 2685 | 1000 | 0 |
Core 2016 [51] | PDBbind | 290 | 290 | 0 | 0 | 290 |
Test105 [14] | PDB | 105 | 105 | 0 | 0 | 105 |
Test71 [14] | PDB | 71 | 71 | 0 | 0 | 71 |
Total | 17,806 | 13,372 | 11,906 | 1000 | 466 |
Model | Layers | Qubits | Quantum Embedding | Formula of Trainable Parameters of Prediction Module | Trainable Parameters of Prediction Module |
---|---|---|---|---|---|
C5-DTA | 256, 512, 256, 1 | (in_1 × out_1 + × out_1) + (in_2 × out_2 + × out_2) + (in_3 × out_3 + × out_3) | (256 × 512 + 512) + (512 × 256 + 256) + (256 × 1 + 1) = 263,169 | ||
C5-DTA-mc | 256, 128, 64, 1 | (256 × 128 + 128) + (128 × 64 + 64) + (64 × 1 + 1) = 41,217 | |||
C5-DTA-lc | 256, 16, 8, 1 | (256 × 16 + 16) + (16 × 8 + 8) + (8 × 1 + 1) = 4256 | |||
HQ-DTA-amQE-8 | 8 | Amplitude | layers × qubits × rotation | 3 × 8 × 3 = 72 | |
HQ-DTA-anQE-8 | 8 | Angle | blocks × layers × qubits × rotation | 32 × 3 × 8 × 3 = 2304 | |
HQ-DTA-danQE-8 | 8 | Dense Angle | 16 × 3 × 8 × 3 = 1152 | ||
HQ-DTA-anQE-4 | 4 | Angle | 64 × 3 × 4 × 3 = 2304 | ||
HQ-DTA-danQE-4 | 4 | Dense Angle | 32 × 3 × 4 × 3 = 1152 |
Model | Blocks | Layers | RX | RY | RZ | CNOT | Total Gates | Depth |
---|---|---|---|---|---|---|---|---|
HQ-DTA-amQE-8 | 1 | 3 | 255 + 24 | 255 + 24 × 2 | 508 + 24 + 7 | 1121 | 1004 + (24 + 3 × 3) × 1+ 7 = 1044 | |
HQ-DTA-anQE-8 | 32 | 3 | 256 | 24 × 32 | 2 × 24 × 32 | 24 × 32 + 7 | 3335 | 32 + (24 + 3 × 3) × 32 + 7 = 1095 |
HQ-DTA-danQE-8 | 16 | 3 | 128 | 128 + 24 × 16 | 2 × 24 × 16 | 24 × 16 + 7 | 1799 | 16 × 2 + (24 + 3 × 3) × 16 + 7 = 567 |
HQ-DTA-anQE-4 | 64 | 3 | 256 | 12 × 64 | 2 × 12 × 64 | 12 × 64 + 7 | 3335 | 64 + (12 + 3 × 3) × 64 + 7 = 1223 |
HQ-DTA-danQE-4 | 32 | 3 | 128 | 128 + 12 × 32 | 2 × 12 × 32 | 12 × 32 + 7 | 1,799 | 32 × 2 + (12 + 3 × 3) × 32 + 7 = 743 |
Model | Parameters of Prediction Module | MSE (↓) | RMSE (↓) | MAE (↓) | R (↑) | CI (↑) | SD (↓) |
---|---|---|---|---|---|---|---|
C5-DTA | 263,169 | 0.0092 | 0.0963 | 0.0790 | 0.7605 | 0.7792 | 0.0954 |
C5-DTA-mc | 41,217 | 0.0119 | 0.1094 | 0.0882 | 0.6995 | 0.7532 | 0.1049 |
C5-DTA-lc | 4256 | 0.0301 | 0.1737 | 0.1420 | 0.5927 | 0.7088 | 0.1183 |
HQ-DTA-amQE-8 | 72 | 0.0130 | 0.1138 | 0.0917 | 0.6511 | 0.7298 | 0.1115 |
HQ-DTA-anQE-8 | 2304 | 0.0105 | 0.1026 | 0.0822 | 0.7344 | 0.7690 | 0.0997 |
HQ-DTA-danQE-8 | 1152 | 0.0100 | 0.1003 | 0.0809 | 0.7367 | 0.7690 | 0.0992 |
HQ-DTA-anQE-4 | 2304 | 0.0108 | 0.1043 | 0.0843 | 0.7291 | 0.7664 | 0.1005 |
HQ-DTA-danQE-4 | 1152 | 0.0090 | 0.0953 | 0.0781 | 0.7699 | 0.7829 | 0.0937 |
Model | Time | Epoch of Best Model |
---|---|---|
C5-DTA | 3:36:51.821851 | 28 |
C5-DTA-mc | 3:37:51.861312 | 30 |
C5-DTA-lc | 3:38:16.859586 | 19 |
HQ-DTA-amQE-8 | 3:42:06.893518 | 27 |
HQ-DTA-anQE-8 | 5:19:17.879674 | 28 |
HQ-DTA-danQE-8 | 4:33:20.657034 | 22 |
HQ-DTA-anQE-4 | 4:37:57.012041 | 28 |
HQ-DTA-danQE-4 | 5:47:38.876147 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramouli, M.; Savvas, I.K.; Vasilaki, A.; Tsipourlianos, A.; Garani, G. Hybrid Quantum Neural Network Approaches to Protein–Ligand Binding Affinity Prediction. Mathematics 2024, 12, 2372. https://doi.org/10.3390/math12152372
Avramouli M, Savvas IK, Vasilaki A, Tsipourlianos A, Garani G. Hybrid Quantum Neural Network Approaches to Protein–Ligand Binding Affinity Prediction. Mathematics. 2024; 12(15):2372. https://doi.org/10.3390/math12152372
Chicago/Turabian StyleAvramouli, Maria, Ilias K. Savvas, Anna Vasilaki, Andreas Tsipourlianos, and Georgia Garani. 2024. "Hybrid Quantum Neural Network Approaches to Protein–Ligand Binding Affinity Prediction" Mathematics 12, no. 15: 2372. https://doi.org/10.3390/math12152372
APA StyleAvramouli, M., Savvas, I. K., Vasilaki, A., Tsipourlianos, A., & Garani, G. (2024). Hybrid Quantum Neural Network Approaches to Protein–Ligand Binding Affinity Prediction. Mathematics, 12(15), 2372. https://doi.org/10.3390/math12152372