Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space
Abstract
1. Introduction
1.1. Symmetric Affine Connection Space in Eisenhart’s Sense
1.2. Riemannian Space in Eisenhart’s Sense
1.3. Almost Geodesic Mappings
1.4. Invariants for Geometric Mappings
- 1.
- If the transformation f preserves value of the object but changes its form to , then the invariance for geometrical object under transformation f is valued.
- 2.
- If the transformation f preserves both the value and the form of geometrical object , then the invariance for geometrical object under the transformation f is total.
1.5. Motivation
- To review results about invariants for mappings of symmetric affine connection spaces obtained in [18].
- To obtain the corresponding invariants for second type almost geodesic mappings of Riemannian space .
2. Review of Basic and Derived Invariants
3. Invariants for Second Type Almost Geodesic Mappings of Space
Invariants for -Mappings of Space
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Eisenhart, L.P. Non-Riemannian Geometry; American Mathematical Society: New York, NY, USA, 1927. [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M. Differential Geometry of Special Mappings, 2nd ed.; Palacký University Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikeš, O.J.; Pokorna, O.; Starko, P.G. On Almost Geodesic Mappings π2(e) onto Riemannian Spaces. Rend. Circ. Mat. Palermo 2004, 72, 151–157. [Google Scholar]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Berezovski, V.; Cherevko, Y.; Hinterleitner, I.; Peška, P. Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces. Mathematics 2020, 8, 1560. [Google Scholar] [CrossRef]
- Berezovskii, V.; Guseva, N.I.; Mikeš, J. Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces. Math. Notes 2021, 110, 293–296. [Google Scholar] [CrossRef]
- Berezovski, V.; Cherevko, I.; Hinterleitner, I.; Mikeš, J. Canonical Almost Geodesic Mappings of the First Type onto Generalized Ricci Symmetric Spaces. Filomat 2022, 36, 1089–1097. [Google Scholar] [CrossRef]
- Sinyukov, N.S. Almost geodesic mapping of affine-connected and Riemannian spaces. Itogi Nauk. Tekhniki. Seriya Probl. Geom. Tr. Geom. Semin. 1982, 13, 3–26. [Google Scholar]
- Berezovski, V.; Mikeš, J. On a Classification of Almost Geodesic Mappings of Affine Connection Spaces. Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Math. 1996, 35, 21–24. [Google Scholar]
- Berezovski, V.; Mikeš, J. Almost Geodesic Mappings of Spaces with Affine Connection. J. Math. Sci. 2015, 207, 389–409. [Google Scholar] [CrossRef]
- Berezovski, V.; Basco, S.; Cherevko, Y.; Mikeš, J. Canonical Almost Geodesic Mappings π2(e), e = ±1, of Spaces with Affine Connection onto m-Symmetric Spaces. Miskolc Math. Notes 2023, 24, 93–104. [Google Scholar] [CrossRef]
- Ryparova, L.; Mikeš, J.; Peška, P. Almost Geodesic Curves and Geodesic Mappings. J. Soviet Math. 2023, 221, 93–103. (In Russian) [Google Scholar] [CrossRef]
- Mikeš, J.; Berezovski, V.E.; Stepanova, E.; Chudá, H. Geodesic Mappings and Their Generalizations. J. Math. Sci. 2016, 217, 607–623. [Google Scholar] [CrossRef]
- Mikeš, J.; Stepanova, E.; Vanžurova, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M. Differential Geometry of Special Mappings; Palacky University: Olomouc, Czech Republic, 2015. [Google Scholar]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacky University: Olomouc, Czechia, 2009. [Google Scholar]
- Vesić, N.O. Basic invariants of geometric mappings. Miskolc Math. Notes 2020, 21, 473–487. [Google Scholar] [CrossRef]
- Vesić, N.O.; Milenković, V.M.; Stanković, M.S. Two Invariants for Geometric Mappings. Axioms 2020, 11, 239. [Google Scholar] [CrossRef]
- Simjanović, D.J. Tensor Calculus at Symmetric and Non-Symmetric Affine Connection Spaces with Application in the Fields of Linear Programming and Design of Fuzzy Controllers. Ph.D. Thesis, Faculty of Electronic Engineering, Niš, Serbia, 2024. [Google Scholar]
- Simjanović, D.J.; Vesić, N.O. Novel invariants for almost geodesic mappings of the third type. Miskolc Math. Notes 2021, 22, 961–975. [Google Scholar] [CrossRef]
- Peška, P.; Jukl, M.; Mikeš, J. Tensor Decompositions and Their Properties. Mathematics 2023, 11, 3638. [Google Scholar] [CrossRef]
- Pistruil, M.I.; Kurbatova, I.N. On quasi-geodesic mappings of specialpseudo-Riemannian spaces. Proc. Int. Geom. Center 2022, 15, 121–139. [Google Scholar]
- Rovenski, V.; Mikeš, J.; Stepanov, S. The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations. Mathematics 2021, 9, 1379. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology; Fermi National Accelerator Laboratory, University of Chicago: Chicago, IL, USA, 2003. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity; Albert Einstein Center for Fundamental Physics, Universität Bern: Bern, Switzerland, 2015. [Google Scholar]
- Bach, R. Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 1921, 9, 110–135. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Method of Information Geometry. In AMS Monograph; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Nielsen, F. An Elementary Introduction to Information Geometry. Entropy 2020, 22, 1100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesić, N.O.; Simjanović, D.J.; Randjelović, B.M. Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics 2024, 12, 2329. https://doi.org/10.3390/math12152329
Vesić NO, Simjanović DJ, Randjelović BM. Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics. 2024; 12(15):2329. https://doi.org/10.3390/math12152329
Chicago/Turabian StyleVesić, Nenad O., Dušan J. Simjanović, and Branislav M. Randjelović. 2024. "Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space" Mathematics 12, no. 15: 2329. https://doi.org/10.3390/math12152329
APA StyleVesić, N. O., Simjanović, D. J., & Randjelović, B. M. (2024). Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics, 12(15), 2329. https://doi.org/10.3390/math12152329