Bisection Series Approach for Exotic 3F2(1)-Series
Abstract
1. Introduction and Motivation
2. Evaluations When
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3. Evaluations When and Is Odd
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
4. Concluding Comments and Further Observation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Beukers, F.; Forsgard, J. Γ-evaluations of hypergeometric series. Ramanujan J. 2022, 58, 677–699. [Google Scholar] [CrossRef]
- Karp, D.; Prilepkina, E.G. Beyond the beta integral method: Transformation formulas for hypergeometric functions via Meijer’s G function. Symmetry 2022, 14, 1541. [Google Scholar] [CrossRef]
- Shpot, M.A. A massive Feynman integral and some reduction relations for Appell functions. J. Math. Phys. 2007, 48, 123512. [Google Scholar] [CrossRef]
- Shpot, M.A.; Rathie, A.K. Two closed-form evaluations for the generalized hypergeometric function 4F3(). arXiv 2023, arXiv:2303.07664v1. [Google Scholar]
- Shpot, M.A.; Srivastava, H.M. Reduction and transformation formulas for the Appell and related functions in two variables. Math. Methods Appl. Sci. 2017, 40, 4102–4108. [Google Scholar]
- Asakura, M.; Otsubo, N.; Terasoma, T. An algebro-geometric study of special values of hypergeometric functions 3F2. Nagoya Math. J. 2019, 236, 47–62. [Google Scholar] [CrossRef]
- Asakura, M.; Yabu, T. Explicit logarithmic formulas of special values of hypergeometric functions 3F2. Commun. Contemp. Math. 2020, 22, 1950040. [Google Scholar] [CrossRef]
- Chen, K.-W. Explicit formulas for some infinite 3F2(1)-Series. Axioms 2021, 10, 125. [Google Scholar] [CrossRef]
- Chen, M.N.; Chu, W. Evaluation of certain exotic 3F2(1)-Series. Nagoya Math. J. 2023, 249, 107–118. [Google Scholar] [CrossRef]
- Chen, M.N.; Chu, W. Contiguous values for a class of nonterminating 3F2(1)-Series. Integral Transform. Spec. Funct. 2023, 34, 457–468. [Google Scholar] [CrossRef]
- Chu, W. Trigonometric expressions for Gaussian 2F1-series. Turk. J. Math. 2019, 43, 1823–1836. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Gessel, I.M. Finding identities with the WZ method. J. Symb. Comput. 1995, 20, 537–566. [Google Scholar] [CrossRef]
- Chu, W. Analytical formulae for extened 3F2-series of Watson–Whipple–Dixon with two extra integer parameters. Math. Comp. 2012, 81, 467–479. [Google Scholar] [CrossRef]
- Chu, W. Further closed formulae of exotic 3F2-Series. Axioms 2023, 12, 291. [Google Scholar] [CrossRef]
- Karp, D.; Prilepkina, E.G. Transformations of the hypergeometric 4F3 with one unit shift: A group theoretic study. Mathematics 2020, 8, 1966. [Google Scholar] [CrossRef]
- Mishev, D. Extensions of classical hypergeometric identities of Bailey and Whipple. J. Math. Anal. Appl. 2022, 507, 125775. [Google Scholar] [CrossRef]
- Shpot, M.A.; Srivastava, H.M. The Clausenian hypergeometric function with unit argument and negative integral parameter differences. Appl. Math. Comput. 2015, 259, 819–827. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.N.; Chu, W. Bisection Series Approach for Exotic 3F2(1)-Series. Mathematics 2024, 12, 1915. https://doi.org/10.3390/math12121915
Chen MN, Chu W. Bisection Series Approach for Exotic 3F2(1)-Series. Mathematics. 2024; 12(12):1915. https://doi.org/10.3390/math12121915
Chicago/Turabian StyleChen, Marta Na, and Wenchang Chu. 2024. "Bisection Series Approach for Exotic 3F2(1)-Series" Mathematics 12, no. 12: 1915. https://doi.org/10.3390/math12121915
APA StyleChen, M. N., & Chu, W. (2024). Bisection Series Approach for Exotic 3F2(1)-Series. Mathematics, 12(12), 1915. https://doi.org/10.3390/math12121915