Parameterized Finite Binomial Sums
Abstract
:1. Introduction and Preliminaries
1.1. Main Results
1.2. Required Functions, Notations, and Lemmas
2. Proofs of Main Results
3. Particular Cases and Remarks
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.-W. Super congruences and Euler numbers. Sci. China Math. 2011, 54, 2509–2535. [Google Scholar] [CrossRef]
- Sofo, A.; Batır, N. On finite sums and integral representations. Integers 2013, 13, A45. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Batır, N.; Choi, J. Certain logarithmic integrals and associated Euler sums. J. Math. Anal. Appl. 2024, 538, 128365. [Google Scholar] [CrossRef]
- Alzer, H.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
- Batır, N.; Choi, J. Four types of variant Euler harmonic sums. Appl. Anal. Discret. Math. 2024, in press. [Google Scholar] [CrossRef]
- Gould, H. Solution to advanced problem H-219. Fibonacci Quart. 1975, 13, 185–187. [Google Scholar]
- Batır, N.; Sofo, A. A unified treatment of certain classes of combinatorial identities. J. Integer. Seq. 2021, 24, 21.3.2. [Google Scholar]
- Batır, N. Finite binomial sum identities with harmonic numbers. J. Integer. Seq. 2021, 24, 21.4.3. [Google Scholar]
- Batır, N. Combinatorial identities involving harmonic numbers. Integers 2020, 20, A25. [Google Scholar]
- Batır, N. On some combinatorial identities and harmonic sums. Int. J. Number Theory 2017, 13, 1695–1709. [Google Scholar] [CrossRef]
- Batır, N. Parametric binomial sums involving harmonic numbers. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. A Mat. 2021, 115, 91. [Google Scholar] [CrossRef]
- Batır, N.; Chen, K.-W. Combinatorial identities involving reciprocals of the binomial and central binomial coefficients and harmonic numbers. J. Differ. Equations Appl. 2022, 28, 222–243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batır, N.; Choi, J. Parameterized Finite Binomial Sums. Mathematics 2024, 12, 2450. https://doi.org/10.3390/math12162450
Batır N, Choi J. Parameterized Finite Binomial Sums. Mathematics. 2024; 12(16):2450. https://doi.org/10.3390/math12162450
Chicago/Turabian StyleBatır, Necdet, and Junesang Choi. 2024. "Parameterized Finite Binomial Sums" Mathematics 12, no. 16: 2450. https://doi.org/10.3390/math12162450
APA StyleBatır, N., & Choi, J. (2024). Parameterized Finite Binomial Sums. Mathematics, 12(16), 2450. https://doi.org/10.3390/math12162450