On Some General Tornheim-Type Series
Abstract
1. Introduction
2. Algebraic Settings and Integrals Associated with Two-Posets
3. Explicit Formula for Mordell–Tornheim Series
4. Decompositions with Relations to -Series and -Series
5. Evaluations of
6. Evaluations of
7. Evaluations of
8. Another Expression of -Series
9. The Case
10. Examplesand Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.-W.; Chung, C.-L.; Eie, M. Sum formulas and duality theorems of multiple zeta values. J. Number Theory 2016, 158, 33–53. [Google Scholar] [CrossRef]
- Eie, M. The Theory of Multiple Zeta Values with Applications in Combinatorics; Monographs in Number Theory, World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Hoffman, M.E. Multiple harmonic series. Pac. J. Math. 1992, 152, 275–290. [Google Scholar] [CrossRef]
- Campbell, J.M.; Chen, K.-W. Explicit identities for infinite families of series involving squared binomial coefficients. J. Math. Anal. Appl. 2022, 513, 126219. [Google Scholar] [CrossRef]
- Chen, K.-W. Generalized harmonic number sums and quasisymmetric functions. Rocky Mountain J. Math. 2020, 50, 1253–1275. [Google Scholar] [CrossRef]
- Chen, K.-W.; Chen, Y.-H. Infinite series containing generalized harmonic functions. Notes Number Theory Discrete Math. 2020, 26, 85–104. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler sums and integral connections. Mathematics 2019, 7, 833. [Google Scholar] [CrossRef]
- Tornheim, L. Harmonic double series. Am. J. Math. 1950, 72, 303–314. [Google Scholar] [CrossRef]
- Mordell, L.J. On the evaluation of some multiple series. J. Lond. Math. Soc. 1958, 33, 368–371. [Google Scholar] [CrossRef]
- Witten, E. On quantum gauge theories in two dimensions. Commun. Math. Phys. 1991, 141, 153–209. [Google Scholar] [CrossRef]
- Bradley, D.M.; Zhou, X. On Mordell–Tornheim sums and multiple zeta values. Ann. Sci. Math. Québec 2010, 34, 15–23. [Google Scholar]
- Kuba, M. On evaluations of infinite double sums and Tornheim’s double series. Sém. Lothar. Combin. 2008, 58, B58d-11. [Google Scholar]
- Wang, W.; Zhang, H. On Mordell–Tornheim double Eisentein series. Res. Number Theory 2020, 6, 33. [Google Scholar] [CrossRef]
- Dilcher, K. Analytic continuations of character and alternating Tornheim zeta functions. Amer. Math. Monthly 2021, 129, 780–795. [Google Scholar] [CrossRef]
- Nakamura, T. Symmetric Tornheim double zeta functions. Abh. Math. Semin. Univ. Hambg. 2021, 91, 5–14. [Google Scholar] [CrossRef]
- Aliev, I.A.; Dil, A. Tornheim-like series, harmonic numbers, and zeta values. J. Integer Seq. 2022, 25, 22.5.5. [Google Scholar]
- Nakamura, T. Bounds for the Tornheim double zeta function. Proc. Amer. Math. Soc. Ser. B 2023, 10, 1–12. [Google Scholar] [CrossRef]
- Hoffman, M.E. The algebra of multiple harmonic series. J. Algebra 1997, 194, 477–495. [Google Scholar] [CrossRef]
- Yamamoto, S. Multiple zeta-star values and multiple integrals. RIMS Kôkyûroku Bessatsu 2017, B68, 3–14. [Google Scholar]
- Ihara, K.; Kaneko, M.; Zagier, D. Derivation and double shuffle relations for multiple zeta values. Compos. Math. 2006, 142, 307–338. [Google Scholar] [CrossRef]
- Kaneko, M.; Yamamoto, S. A new integral-series identity of multiple zeta values and regularizations. Selecta Math. New Series 2018, 24, 2499–2521. [Google Scholar] [CrossRef]
- Yamamoto, S. Integrals associated with 2-posets and applications to multiple zeta values. RIMS Kôkyûroku Bessatsu 2020, B83, 27–46. [Google Scholar]
- Chen, K.-W. Sum relations from shuffle products of alternating multiple zeta values. Mediterr. J. Math. 2022, 19, 206. [Google Scholar] [CrossRef]
- Li, Z.; Qin, C. Shuffle product formulas of multiple zeta values. J. Number Theory 2017, 171, 79–111. [Google Scholar] [CrossRef]
- Hirose, M. Multiple Zeta Values Online Tools. 29 April 2022. Available online: http://minoruhirose.github.io/mzv-online-tools/ (accessed on 3 June 2024).
- Chen, K.-W.; Yang, F.-Y. Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Math. 2024, 9, 16885–16900. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-W. On Some General Tornheim-Type Series. Mathematics 2024, 12, 1867. https://doi.org/10.3390/math12121867
Chen K-W. On Some General Tornheim-Type Series. Mathematics. 2024; 12(12):1867. https://doi.org/10.3390/math12121867
Chicago/Turabian StyleChen, Kwang-Wu. 2024. "On Some General Tornheim-Type Series" Mathematics 12, no. 12: 1867. https://doi.org/10.3390/math12121867
APA StyleChen, K.-W. (2024). On Some General Tornheim-Type Series. Mathematics, 12(12), 1867. https://doi.org/10.3390/math12121867