Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains
Abstract
:1. Introduction
2. Spaces of Morrey-Type in Unbounded Domains
3. Weak Maximum Principle
4. Existence Result
- 1.
- coercive, i.e.,
- 2.
- pseudomonotone, i.e.,
- (i)
- A is bounded (it transforms bounded sets of V in bounded sets of );
- (ii)
- if weakly in V and , thenfor all w in V.
- 1.
- is bounded in ;
- 2.
- a.e. in Ω.
- Step 2. Let us now prove (23).
5. Regularity
- Step 1. If , for some and for every , the function satisfies the hypotheses of Lemma 4. Then we can choose with , as a test function in the variational formulation of problem (18).
- Therefore, from the same argument as in Lemma 7, using (11) and Corollary 1, we observe that there exists , independent of n, such that
- Step 1. First, we prove that, for any , there exist and a positive constant C, independent of n, such that one has
- Step 2: Let us prove that, for any and any , there exists a positive constant C, independent of n, such that
- Step 3. It results in
6. Uniqueness
7. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transirico, M.; Troisi, M.; Vitolo, A. Space of Morrey Type and Elliptic Equations in divergence form on unbounded domains. Boll. Unione Mat. Ital. 1995, 7, 153–174. [Google Scholar]
- Di Gironimo, P.; Monsurrò, S.; Zecca, G. Dirichlet problem for noncoercive nonlinear elliptic equations with singular drift term in unbounded domains. ESAIM Control Optim. Calc. Var. 2023, 29, 85. [Google Scholar] [CrossRef]
- Transirico, M.; Troisi, M. Equazioni ellittiche del secondo ordine a coefficienti discontinui e di tipo variazionale in aperti non limitati. Boll. Unione Mat. Ital. 1988, 7, 385–398. [Google Scholar]
- Chiarenza, F.; Frasca, M. A remark on a paper by C. Fefferman. Proc. Am. Math. Soc. 1990, 108, 407–409. [Google Scholar] [CrossRef]
- Boccardo, L.; Orsina, L. Very singular solutions for linear Dirichlet problems with singular convention terms. Nonlinear Anal. 2020, 194, 111437. [Google Scholar] [CrossRef]
- Boccardo, L.; Buccheri, S.; Cirmi, G.R. Caldéron-Zygmund-Stampacchia theory for infinite energy solutions of nonlinear elliptic equations with singular drift. Nonlinear Differ. Equ. Appl. 2020, 27, 38. [Google Scholar] [CrossRef]
- Stampacchia, G. Equations elliptiques du second ordre à coefficients discontinus. In Proceedings of the Séminaire de Mathématiques Supérieures, Université de Montréal, Montreal, QC, Canada, 4e Session. été 1965; Les Presses de l’Université de Montréal: Montréal, QC, Canada, 1966. [Google Scholar]
- Porretta, A. Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 2015, 216, 1–62. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Nachman, A.; Callegari, A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 1980, 38, 275–281. [Google Scholar] [CrossRef]
- Okubo, A.; Levin, S.A. Diffusion and Ecological Problems: Modern Prospectives; Springer: New York, NY, USA, 2001. [Google Scholar]
- Carrillo, J.A.; del Pino, M.; Figalli, A.; Mingione, G.; Vazquez, J.L. The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 205–278. [Google Scholar]
- Bottaro, G.; Marina, M.E. Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Boll. Unione Mat. Ital. 1973, 4, 46–56. [Google Scholar]
- Monsurrò, S.; Transirico, M. Noncoercive elliptic equations with discontinuous coefficients in unbounded domains. Nonlinear Anal. 2017, 163, 86–103. [Google Scholar] [CrossRef]
- Alfano, E.A.; Di Gironimo, P.; Monsurrò, S. Regularity results for a noncoercive nonlinear Dirichlet Problem. Rend. Lincei Mat. Appl. 2022, 33, 139–159. [Google Scholar] [CrossRef]
- Di Gironimo, P.; Monsurrò, S.; Zecca, G. On some noncoercive nonlinear problems in unbounded domains. preprint 2023. [Google Scholar]
- Dall’Aglio, A.; De Cicco, V.; Giachetti, D.; Puel, J.-P. Existence of bounded solutions for nonlinear elliptic equations in unbounded domains. NoDEA Nonlinear Differ. Equ. Appl. 2004, 11, 431–450. [Google Scholar] [CrossRef]
- Dall’Aglio, A.; Giachetti, D.; Puel, J.-P. Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. Pura Appl. 2002, 181, 407–426. [Google Scholar] [CrossRef]
- de Bonis, I. Singular elliptic problems in general domains. Appl. Anal. 2023, 102, 2978–2998. [Google Scholar] [CrossRef]
- Di Gironimo, P.; Monsurrò, S.; Zecca, G. An obstacle problem for a class of noncoercive nonlinear operators in unbounded domains. preprint 2023. [Google Scholar]
- Mourgoglou, M. Regularity theory and Green’s function for elliptic equations with lower order terms in unbounded domains. Calc. Var. Partial. Differ. Equ. 2023, 62, 266. [Google Scholar] [CrossRef]
- Caso, L.; Di Gironimo, P.; Monsurrò, S.; Transirico, M. Uniqueness results for higher order elliptic equations in weighted Sobolev spaces. Int. J. Differ. Equ. 2018, 2018, 6259307. [Google Scholar] [CrossRef]
- Di Gironimo, P. Dirichlet problem for elliptic equations with coefficients in locally Morrey spaces. J. Interdiscip. Math. 2020, 23, 1109–1120. [Google Scholar] [CrossRef]
- Wiśniewski, D. Best possible estimates of weak solutions of boundary value problems for quasi-linear elliptic equations in unbounded domains. An. St. Univ. Ovidius Constanta 2017, 25, 201–224. [Google Scholar] [CrossRef]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Stampacchia, G. Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 1965, 15, 189–258. [Google Scholar] [CrossRef]
- Boccardo, L. Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift. ESAIM Control Optim. Calc. Var. 2019, 25, 47. [Google Scholar] [CrossRef]
- Boccardo, L.; Buccheri, S.; Cirmi, G.R. Two nonlinear coercive Dirichlet problems in duality. Milan J. Math. 2018, 86, 97–104. [Google Scholar] [CrossRef]
- Del Vecchio, T.; Porzio, M.M. Existence results for a class of noncoercive Dirichlet problems. Ric. Mat. 1995, 44, 421–438. [Google Scholar]
- Del Vecchio, T.; Posteraro, M.R. An existence result for nonlinear and noncoercive problems. Nonlinear Anal. 1998, 31, 191–206. [Google Scholar] [CrossRef]
- Porretta, A. Elliptic Equations with First Order Terms; Lecture Notes; CIMPA School: Alexandria, Egypt, 2009. [Google Scholar]
- Di Gironimo, P.; Vitolo, A. Elliptic Equations with Discontinuous coefficients in weighted Sobolev Spaces on unbounded domains. J. Math Anal. Appl. 2001, 253, 297–309. [Google Scholar] [CrossRef]
- Monsurrò, S.; Transirico, M. Dirichlet problem for divergence formelliptic equations with discontinuos coefficients. Bound Value Probl. 2012, 2012, 67. [Google Scholar] [CrossRef]
- Boccardo, L.; Croce, G. Esistenza e Regolarità di Soluzioni di Alcuni Problemi Ellittici; Pitagora: Roma, Italy, 2010. [Google Scholar]
- Lions, J.L. Quelques Mèthode de Rèsolutions des Problèmes Aux Limites Non Linèaires; Dunod, Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Di Crescenzo, A.; Spina, S.; Vitolo, A. Existence of bounded solutions of fully nonlinear elliptic equations modeling the first passage time in cylindrical domains. Differ. Integral Equ. 2024, 37, 237–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gironimo, P. Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains. Mathematics 2024, 12, 1860. https://doi.org/10.3390/math12121860
Di Gironimo P. Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains. Mathematics. 2024; 12(12):1860. https://doi.org/10.3390/math12121860
Chicago/Turabian StyleDi Gironimo, Patrizia. 2024. "Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains" Mathematics 12, no. 12: 1860. https://doi.org/10.3390/math12121860
APA StyleDi Gironimo, P. (2024). Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains. Mathematics, 12(12), 1860. https://doi.org/10.3390/math12121860