Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents
Abstract
:1. Introduction
2. Preliminaries
3. The Existence of Positive Solutions for (1)
4. The Nonexistence of a Positive Solution for (1)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jannelli, E. The role played by space dimension in elliptic critical problems. J. Differ. Equ. 1999, 156, 407–426. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Zaky, M.A.; Hendy, A.S.; Dehghan, M. Optical solitons based on N-coupled nonlinear Schrödinger equations and rational RBF partition of unity approach. Eng. Anal. Bound. Elem. 2024, 163, 297–307. [Google Scholar] [CrossRef]
- MaiaM, B.B.V.; Molina-Becerra, M.; Morales-Rodrigo, C.; Suárez, A. Generalized eigenvalue problem for an interface elliptic equation. J. Differ. Equ. 2024, 390, 494–524. [Google Scholar] [CrossRef]
- Savchenko, M.O.; Skrypnik, I.I.; Yevgenieva, Y.A. Continuity and Harnack inequalities for local minimizers of non uniformly elliptic functionals with generalized Orlicz growth under the non-logarithmic conditions. Nonlinear Anal. 2023, 230, 113221. [Google Scholar] [CrossRef]
- Wang, M.C.; Zhang, Q. Existence of solutions for singular critical semilinear elliptic equation. Appl. Math. Lett. 2019, 94, 217–223. [Google Scholar] [CrossRef]
- Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. In Physical Origins and Classical Methods; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Brezis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Coleman, S.; Glazer, V.; Martin, A. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys. 1978, 58, 211–221. [Google Scholar] [CrossRef]
- Strauss, W. Existence of solitary waves in higher dimensions. Commun. Math. Phys. 1977, 55, 149–162. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Cao, D.M.; Peng, S.J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 2003, 193, 424–434. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Padilla, P. The effect of the shape of the domain on the existence of solutions of an equation involving the critical Sobolev exponent. J. Differ. Equ. 1996, 124, 449–471. [Google Scholar] [CrossRef]
- Ferrero, A.; Gazzola, F. Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 2001, 177, 494–522. [Google Scholar] [CrossRef]
- Cao, D.M.; Han, P.G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 2004, 205, 521–537. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 2004, 17, 411–416. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Solutions for semilinear elliptic problems with Sobolev-Hardy exponents and Hardy potential. Appl. Math. Lett. 2005, 18, 1094–1100. [Google Scholar] [CrossRef]
- Ekeland, I.; Ghoussoub, N. Selected new aspects of the calculus of variations in the large. Bull. Am. Math. Soc. 2002, 39, 207–265. [Google Scholar] [CrossRef]
- Kang, D.S.; Deng, Y.B. Existence of solution for a singular critical elliptic equation. J. Math. Anal. Appl. 2003, 284, 724–732. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents. Appl. Math. Lett. 2007, 20, 1175–1183. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applictions to Differential Equations; GCBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Struwe, M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A.; Ural’Tseva, N.N. A variational problem and quasi-linear elliptic equations in many independent variables. Dokl. Akad. Nauk. SSSR 1960, 135, 1330–1333, Translation in Soviet Math. Dokl. 1960, 1, 1390–1394.. [Google Scholar] [CrossRef]
- Skrypnik, I.V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1994; Volume 139. [Google Scholar]
- Lions, P.L. The concentration compactness principle in the calculus of variations. The limit case, Part 1. Rev. Mat. Iberoam. 1985, 1, 145–201. [Google Scholar] [CrossRef]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The limit case, Part 2. Rev. Mat. Iberoam. 1985, 1, 45–121. [Google Scholar] [CrossRef] [PubMed]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The locally compact case, Part 1. Annales de l Institut Henri Poincare. Nonlinear Anal. 1984, 1, 109–145. [Google Scholar]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The locally compact case, Part 2. Annales de l Institut Henri Poincare. Nonlinear Anal. 1984, 1, 223–283. [Google Scholar]
- Kang, D.S. Existence and properties of radial solutions to critical elliptic systems involving strongly coupled Hardy terms. J. Math. Anal. Appl. 2024, 536, 128252. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 1998, 144, 441–476. [Google Scholar] [CrossRef]
- Chou, K.S.; Chu, C.W. On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc. 1993, 48, 137–151. [Google Scholar] [CrossRef]
- Iturriaga, L. Existence and multiplicity results for some quasilinear elliptic equation with weights. J. Math. Anal. Appl. 2008, 339, 1084–1102. [Google Scholar] [CrossRef]
- Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 1979, 68, 209–243. [Google Scholar] [CrossRef]
- Pohozaev, S.I. Eigenfunctions of the equation Δu+λf(u) = 0. Soviet Math. Dokl. 1965, 6, 1408–1411. [Google Scholar]
- Mitidieri, E.; Pohozaev, S.I. Towards a Unified Approach to Nonexistence of Solutions for a Class of Differential Inequalities. Milan J. Math. 2004, 72, 129–162. [Google Scholar] [CrossRef]
- Pohozaev, S.I.; Tesei, A. Nonexistence of local solutions to semilinear partial differential inequalities. Ann. I. H. Poincaré—AN 2004, 21, 487–502. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-L.; Fan, Y.-H. Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics 2024, 12, 1616. https://doi.org/10.3390/math12111616
Wang L-L, Fan Y-H. Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics. 2024; 12(11):1616. https://doi.org/10.3390/math12111616
Chicago/Turabian StyleWang, Lin-Lin, and Yong-Hong Fan. 2024. "Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents" Mathematics 12, no. 11: 1616. https://doi.org/10.3390/math12111616
APA StyleWang, L.-L., & Fan, Y.-H. (2024). Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics, 12(11), 1616. https://doi.org/10.3390/math12111616