Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents
Abstract
1. Introduction
2. Preliminaries
3. The Existence of Positive Solutions for (1)
4. The Nonexistence of a Positive Solution for (1)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jannelli, E. The role played by space dimension in elliptic critical problems. J. Differ. Equ. 1999, 156, 407–426. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Zaky, M.A.; Hendy, A.S.; Dehghan, M. Optical solitons based on N-coupled nonlinear Schrödinger equations and rational RBF partition of unity approach. Eng. Anal. Bound. Elem. 2024, 163, 297–307. [Google Scholar] [CrossRef]
- MaiaM, B.B.V.; Molina-Becerra, M.; Morales-Rodrigo, C.; Suárez, A. Generalized eigenvalue problem for an interface elliptic equation. J. Differ. Equ. 2024, 390, 494–524. [Google Scholar] [CrossRef]
- Savchenko, M.O.; Skrypnik, I.I.; Yevgenieva, Y.A. Continuity and Harnack inequalities for local minimizers of non uniformly elliptic functionals with generalized Orlicz growth under the non-logarithmic conditions. Nonlinear Anal. 2023, 230, 113221. [Google Scholar] [CrossRef]
- Wang, M.C.; Zhang, Q. Existence of solutions for singular critical semilinear elliptic equation. Appl. Math. Lett. 2019, 94, 217–223. [Google Scholar] [CrossRef]
- Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. In Physical Origins and Classical Methods; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Brezis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Coleman, S.; Glazer, V.; Martin, A. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys. 1978, 58, 211–221. [Google Scholar] [CrossRef]
- Strauss, W. Existence of solitary waves in higher dimensions. Commun. Math. Phys. 1977, 55, 149–162. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Cao, D.M.; Peng, S.J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 2003, 193, 424–434. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Padilla, P. The effect of the shape of the domain on the existence of solutions of an equation involving the critical Sobolev exponent. J. Differ. Equ. 1996, 124, 449–471. [Google Scholar] [CrossRef]
- Ferrero, A.; Gazzola, F. Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 2001, 177, 494–522. [Google Scholar] [CrossRef]
- Cao, D.M.; Han, P.G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 2004, 205, 521–537. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 2004, 17, 411–416. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Solutions for semilinear elliptic problems with Sobolev-Hardy exponents and Hardy potential. Appl. Math. Lett. 2005, 18, 1094–1100. [Google Scholar] [CrossRef]
- Ekeland, I.; Ghoussoub, N. Selected new aspects of the calculus of variations in the large. Bull. Am. Math. Soc. 2002, 39, 207–265. [Google Scholar] [CrossRef]
- Kang, D.S.; Deng, Y.B. Existence of solution for a singular critical elliptic equation. J. Math. Anal. Appl. 2003, 284, 724–732. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents. Appl. Math. Lett. 2007, 20, 1175–1183. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applictions to Differential Equations; GCBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Struwe, M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A.; Ural’Tseva, N.N. A variational problem and quasi-linear elliptic equations in many independent variables. Dokl. Akad. Nauk. SSSR 1960, 135, 1330–1333, Translation in Soviet Math. Dokl. 1960, 1, 1390–1394.. [Google Scholar] [CrossRef]
- Skrypnik, I.V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1994; Volume 139. [Google Scholar]
- Lions, P.L. The concentration compactness principle in the calculus of variations. The limit case, Part 1. Rev. Mat. Iberoam. 1985, 1, 145–201. [Google Scholar] [CrossRef]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The limit case, Part 2. Rev. Mat. Iberoam. 1985, 1, 45–121. [Google Scholar] [CrossRef] [PubMed]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The locally compact case, Part 1. Annales de l Institut Henri Poincare. Nonlinear Anal. 1984, 1, 109–145. [Google Scholar]
- Lions, P.L. The Concentration compactness principle in the calculus of variations, The locally compact case, Part 2. Annales de l Institut Henri Poincare. Nonlinear Anal. 1984, 1, 223–283. [Google Scholar]
- Kang, D.S. Existence and properties of radial solutions to critical elliptic systems involving strongly coupled Hardy terms. J. Math. Anal. Appl. 2024, 536, 128252. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 1998, 144, 441–476. [Google Scholar] [CrossRef]
- Chou, K.S.; Chu, C.W. On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc. 1993, 48, 137–151. [Google Scholar] [CrossRef]
- Iturriaga, L. Existence and multiplicity results for some quasilinear elliptic equation with weights. J. Math. Anal. Appl. 2008, 339, 1084–1102. [Google Scholar] [CrossRef]
- Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 1979, 68, 209–243. [Google Scholar] [CrossRef]
- Pohozaev, S.I. Eigenfunctions of the equation Δu+λf(u) = 0. Soviet Math. Dokl. 1965, 6, 1408–1411. [Google Scholar]
- Mitidieri, E.; Pohozaev, S.I. Towards a Unified Approach to Nonexistence of Solutions for a Class of Differential Inequalities. Milan J. Math. 2004, 72, 129–162. [Google Scholar] [CrossRef]
- Pohozaev, S.I.; Tesei, A. Nonexistence of local solutions to semilinear partial differential inequalities. Ann. I. H. Poincaré—AN 2004, 21, 487–502. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-L.; Fan, Y.-H. Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics 2024, 12, 1616. https://doi.org/10.3390/math12111616
Wang L-L, Fan Y-H. Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics. 2024; 12(11):1616. https://doi.org/10.3390/math12111616
Chicago/Turabian StyleWang, Lin-Lin, and Yong-Hong Fan. 2024. "Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents" Mathematics 12, no. 11: 1616. https://doi.org/10.3390/math12111616
APA StyleWang, L.-L., & Fan, Y.-H. (2024). Existence and Nonexistence of Positive Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Mathematics, 12(11), 1616. https://doi.org/10.3390/math12111616