# Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Adjustment Model as Part of a Regional Estimation Based on Point Estimates

## 3. Materials and Methods

#### 3.1. Inputs

#### 3.1.1. Satellite Imagery

#### 3.1.2. Soil and Crop Features

**soil type, crop type, and crop stage**). Soil and crop features are not entirely related to the weather conditions adjustment; however, the adjustment model processes them to the point estimation model in which soil and crop features are wholly utilized. Soil and crop features are defined and classified according to the point estimation model [35]. Other soil parameters involved in soil moisture estimation, such as the vertical distribution of water and the root depths, are not considered in soil and crop features because these parameters are determined internally in the point estimation model.

- ${M}^{t=1}$ contains soil type data.
- ${M}^{t=2}$ contains crop type data.
- ${M}^{t=3}$ contains crop stage data.

#### 3.1.3. Checkpoint Location

#### 3.1.4. Weather Conditions Measured

#### 3.2. Subzone Definition

- Matrix ${F}^{l=1}$ corresponds to grasslands.
- Matrix ${F}^{l=2}$ corresponds to tree-covered areas.
- Matrix ${F}^{l=3}$ corresponds to building areas.
- Matrix ${F}^{l=4}$ corresponds to elevation.
- Matrix ${F}^{l=5}$ corresponds to spatial configuration.

#### 3.3. Subzone Features Selection

#### 3.4. Fuzzy Adjustment

#### 3.4.1. Fuzzification

- $j=1$ Lower level of weather condition ${C}_{i}^{0}$.
- $j=2$ Low level of weather condition ${C}_{i}^{0}$.
- $j=3$ Medium level of weather condition ${C}_{i}^{0}$.
- $j=4$ High level of weather condition ${C}_{i}^{0}$.
- $j=5$ Higher level of weather condition ${C}_{i}^{0}$.

- $j=1$ ${\varphi}_{e}^{0}$ is lower than ${\varphi}_{e}^{r}$.
- $j=2$ ${\varphi}_{e}^{0}$ is equal to ${\varphi}_{e}^{r}$.
- $j=3$ ${\varphi}_{e}^{0}$ is higher than ${\varphi}_{e}^{r}$.

#### 3.4.2. Landscape Adjustment

**,**${\mathit{\alpha}}_{\mathbf{4,3}}={\mathit{\lambda}}_{\mathbf{3,4}}$

**,**${\mathit{\alpha}}_{\mathbf{4,4}}={\mathit{\lambda}}_{\mathbf{4,3}}$

**,**${\mathit{\alpha}}_{\mathbf{4,5}}={\mathit{\lambda}}_{\mathbf{5,4}}$, e.g., the previous rule corresponds to rule $n=41$ applied at the test checkpoint, and it can be interpreted as follows:

**IF grassland**is Higher (${\stackrel{~}{\varphi}}_{\mathrm{1,3}}^{4}$) and

**tree-covered area**is Equal (${\stackrel{~}{\varphi}}_{\mathrm{2,2}}^{4}$) and

**building area**is Equal $({\stackrel{~}{\varphi}}_{\mathrm{3,2}}^{4})$ and

**elevation**is Equal ${(\stackrel{~}{\varphi}}_{\mathrm{4,2}}^{4})$ and

**spatial configuration**is Equal (${\stackrel{~}{\varphi}}_{\mathrm{5,2}}^{r}$)

**THEN adjustment factor for temperature**$({\alpha}_{\mathrm{4,1}}$) is Barely High (${\lambda}_{\mathrm{1,4}}$),

**adjustment factor for rain**$({\mathit{\alpha}}_{\mathbf{4,2}}$

**)**is Null (${\lambda}_{\mathrm{2,3}}$),

**adjustment factor for solar radiation**$({\mathit{\alpha}}_{\mathbf{4,3}}$

**)**is High (${\lambda}_{3.4}$),

**adjustment factor for wind speed**$({\mathit{\alpha}}_{\mathbf{4,4}}$

**)**is Null (${\lambda}_{\mathrm{4,3}}$);

**meanwhile, adjustment factor for evapotranspiration**$({\mathit{\alpha}}_{\mathbf{4,5}}$

**)**is Barely High (${\lambda}_{\mathrm{5,4}}$).

#### 3.4.3. Weather Conditions Certainty

#### 3.4.4. Variable Adjustment

**IF THEN**, as in the fuzzy inference system described in Section 3.4.2.

- $\mathit{q}=\mathbf{230}$
**:**IF ${({\eta}_{2})(\stackrel{~}{c}}_{\mathrm{2,4}}^{0})\wedge {({\eta}_{3})(\stackrel{~}{c}}_{\mathrm{3,2}}^{0})\wedge {({\eta}_{4})(\stackrel{~}{c}}_{\mathrm{4,4}}^{0})$ THEN ${\beta}_{1}={\omega}_{\mathrm{1,1}}$, ${\beta}_{2}={\omega}_{\mathrm{2,3}}$, ${\beta}_{3}={\omega}_{\mathrm{3,3}}$, ${\beta}_{4}={\omega}_{\mathrm{4,3}}$, ${\beta}_{5}={\omega}_{\mathrm{5,3}}$. - $\mathit{q}=\mathbf{236}$
**:**IF ${({\eta}_{1})(\stackrel{~}{c}}_{\mathrm{4,3}}^{0})\wedge {({\eta}_{2})(\stackrel{~}{c}}_{\mathrm{2,1}}^{0})\wedge {({\eta}_{3})(\stackrel{~}{c}}_{\mathrm{3,5}}^{0})$ THEN ${\beta}_{1}={\omega}_{\mathrm{1,5}}$, ${\beta}_{2}={\omega}_{\mathrm{2,3}}$, ${\beta}_{3}={\omega}_{\mathrm{3,3}}$, ${\beta}_{4}={\omega}_{\mathrm{4,3}}$, ${\beta}_{5}={\omega}_{\mathrm{5,4}}$.

- $\mathit{q}=\mathbf{230}$
**:**IF Rain is High ${(\stackrel{~}{c}}_{\mathrm{2,4}}^{0})$ and Solar Radiation is Low $\left({\stackrel{~}{c}}_{\mathrm{3,2}}^{0}\right)$ and Wind Speed is High $\left({\stackrel{~}{c}}_{\mathrm{4,4}}^{0}\right)$, THEN Temperature decreases, and the rest of the weather conditions remain the same; that is to say, the variable adjustment ${\beta}_{1}$ is Low ${(\omega}_{\mathrm{1,1}})$ and ${\beta}_{2},{\beta}_{3},{\beta}_{4},{\beta}_{5}$ are Equal (${\omega}_{i,3}$). - $\mathit{q}=\mathbf{236}$
**:**IF Temperature is Medium $\left({\stackrel{~}{c}}_{\mathrm{1,3}}^{0}\right)$ and Rain is Lower ${(\stackrel{~}{c}}_{\mathrm{2,1}}^{0})$ and Solar Radiation is Higher $\left({\stackrel{~}{c}}_{\mathrm{3,5}}^{0}\right)$, THEN output ${\beta}_{1}$, ${\beta}_{5}$ are Barely High $({\omega}_{\mathrm{1,4}},{\omega}_{\mathrm{5,4}})$, ${\beta}_{2}$ ${\beta}_{3}$, ${\beta}_{4}$ are Equal (${\omega}_{\mathrm{2,3}},{\omega}_{\mathrm{3,3}},{\omega}_{\mathrm{4,3}}$).

#### 3.4.5. Final Adjustment

## 4. Results and Discussion

- ${E}_{RMS}=0.0467$ for temperature.
- ${E}_{RMS}=0.0475$ for rain.
- ${E}_{RMS}=0.0187$ for solar radiation.
- ${E}_{RMS}=0.1182$ for wind speed.
- ${E}_{RMS}=0.0386$ for evapotranspiration.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Checkpoint Location

Checkpoint ${\mathit{P}}^{\mathit{r}=\mathrm{0,1},\dots ,\mathit{R}}$ | $\mathbf{Location}({\mathit{x}}_{\mathit{r}},{\mathit{y}}_{\mathit{r}})$ | Checkpoint ${\mathit{P}}^{\mathit{r}=\mathrm{0,1},\dots ,\mathit{R}}$ | $\mathbf{Location}({\mathit{x}}_{\mathit{r}},{\mathit{y}}_{\mathit{r}})$ |
---|---|---|---|

${P}^{0}$ | (21,5) | ${P}^{9}$ | (5,28) |

${P}^{1}$ | (14,9) | ${P}^{10}$ | (38,29) |

${P}^{2}$ | (26,14) | ${P}^{11}$ | (24,32) |

${P}^{3}$ | (31,16) | ${P}^{12}$ | (17,33) |

${P}^{4}$ | (21,17) | ${P}^{13}$ | (12,36) |

${P}^{5}$ | (11,22) | ${P}^{14}$ | (30,40) |

${P}^{6}$ | (22,23) | ${P}^{15}$ | (37,41) |

${P}^{7}$ | (35,23) | ${P}^{16}$ | (19,42) |

${P}^{8}$ | (29,28) | ${P}^{17}$ | (21,48) |

## Appendix B. Image Processing

## Appendix C. Complementary Figures

**Figure A1.**(

**a**) Membership functions of fuzzy weather conditions vector ${\stackrel{~}{C}}_{i}^{0}({v}_{i})$. (

**b**) Output’s (${\alpha}_{r,i}$) membership functions.

## References

- Goumopoulos, C.; O’Flynn, B.; Kameas, A. Automated Zone-Specific Irrigation with Wireless Sensor/Actuator Network and Adaptable Decision Support. Comput. Electron. Agric.
**2014**, 105, 20–33. [Google Scholar] [CrossRef] - Phillips, A.J.; Newlands, N.K.; Liang, S.H.L.; Ellert, B.H. Integrated Sensing of Soil Moisture at the Field-Scale: Measuring, Modeling and Sharing for Improved Agricultural Decision Support. Comput. Electron. Agric.
**2014**, 107, 73–88. [Google Scholar] [CrossRef] - Montoya, A.P.; Obando, F.A.; Osorio, J.A.; Morales, J.G.; Kacira, M. Design and Implementation of a Low-Cost Sensor Network to Monitor Environmental and Agronomic Variables in a Plant Factory. Comput. Electron. Agric.
**2020**, 178, 105758. [Google Scholar] [CrossRef] - Moradkhani, H. Hydrologic Remote Sensing and Land Surface Data Assimilation. Sensors
**2008**, 8, 2986–3004. [Google Scholar] [CrossRef] [PubMed] - Elsayed, H.; Ibrahim, H.; Farag, H.; Sobeih, M.F. Remote Sensing-Based Techniques for Water Management in Small-Scale Farms in Arid Climate. Water Supply
**2022**, 22, 6692–6714. [Google Scholar] [CrossRef] - Romero, R.; Muriel, J.L.; García, I.; Muñoz de la Peña, D. Research on Automatic Irrigation Control: State of the Art and Recent Results. Agric. Water Manag.
**2012**, 114, 59–66. [Google Scholar] [CrossRef] - Nasr, M.; Kubiak-Wójcicka, K.; Mubarak, M.F.; Lee, J. Evaluation of Automatic Irrigation System for Rice Cultivation and Sustainable Agriculture Water Management. Sustainability
**2022**, 14, 11044. [Google Scholar] [CrossRef] - Testa, G.; Masotti, I.; Farías, L. Temporal Variability in Net Primary Production in an Upwelling Area off Central Chile (36°S). Front. Mar. Sci.
**2018**, 5, 361275. [Google Scholar] [CrossRef] - Gardin, L.; Chiesi, M.; Fibbi, L.; Angeli, L.; Rapi, B.; Battista, P.; Maselli, F. Simulation of Soil Water Content through the Combination of Meteorological and Satellite Data. Geoderma
**2021**, 393, 115003. [Google Scholar] [CrossRef] - Guo, X.; Fang, X.; Zhu, Q.; Jiang, S.; Tian, J.; Tian, Q.; Jin, J. Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data. Remote Sens.
**2023**, 15, 2003. [Google Scholar] [CrossRef] - Perrin, C.; Michel, C.; Andréassian, V. Does a Large Number of Parameters Enhance Model Performance? Comparative Assessment of Common Catchment Model Structures on 429 Catchments. J. Hydrol.
**2001**, 242, 275–301. [Google Scholar] [CrossRef] - Aubert, D.; Loumagne, C.; Oudin, L. Sequential Assimilation of Soil Moisture and Streamflow Data in a Conceptual Rainfall–Runoff Model. J. Hydrol.
**2003**, 280, 145–161. [Google Scholar] [CrossRef] - Nayak, A.K.; Biswal, B.; Sudheer, K.P. Role of Hydrological Model Structure in the Assimilation of Soil Moisture for Streamflow Prediction. J. Hydrol.
**2021**, 598, 126465. [Google Scholar] [CrossRef] - Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water
**2017**, 9, 140. [Google Scholar] [CrossRef] - Zhang, X.; Yuan, X.; Liu, H.; Gao, H.; Wang, X. Soil Moisture Estimation for Winter-Wheat Waterlogging Monitoring by Assimilating Remote Sensing Inversion Data into the Distributed Hydrology Soil Vegetation Model. Remote Sens.
**2022**, 14, 792. [Google Scholar] [CrossRef] - Pan, F.; Nieswiadomy, M.; Qian, S. Application of a Soil Moisture Diagnostic Equation for Estimating Root-Zone Soil Moisture in Arid and Semi-Arid Regions. J. Hydrol.
**2015**, 524, 296–310. [Google Scholar] [CrossRef] - Jones, H.G. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. J. Exp. Bot.
**2004**, 55, 2427–2436. [Google Scholar] [CrossRef] - Han, J.; Yang, Y.; Roderick, M.L.; McVicar, T.R.; Yang, D.; Zhang, S.; Beck, H.E. Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments. Water Resour. Res.
**2020**, 56, e2020WR027392. [Google Scholar] [CrossRef] - Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information Theoretic Evaluation of Satellite Soil Moisture Retrievals. Remote Sens. Environ.
**2018**, 204, 392–400. [Google Scholar] [CrossRef] - Liou, Y.-A.; Liu, S.-F.; Wang, W.-J. Retrieving Soil Moisture from Simulated Brightness Temperatures by a Neural Network. IEEE Trans. Geosci. Remote Sens.
**2001**, 39, 1662–1672. [Google Scholar] [CrossRef] - Zanetti, S.S.; Cecílio, R.A.; Alves, E.G.; Silva, V.H.; Sousa, E.F. Estimation of the Moisture Content of Tropical Soils Using Colour Images and Artificial Neural Networks. CATENA
**2015**, 135, 100–106. [Google Scholar] [CrossRef] - Elshorbagy, A.; Parasuraman, K. On the Relevance of Using Artificial Neural Networks for Estimating Soil Moisture Content. J. Hydrol.
**2008**, 362, 1–18. [Google Scholar] [CrossRef] - Dumedah, G.; Walker, J.P.; Chik, L. Assessing Artificial Neural Networks and Statistical Methods for Infilling Missing Soil Moisture Records. J. Hydrol.
**2014**, 515, 330–344. [Google Scholar] [CrossRef] - Souissi, R.; Al Bitar, A.; Zribi, M. Accuracy and Transferability of Artificial Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the Globe. Water
**2020**, 12, 3109. [Google Scholar] [CrossRef] - Ghasemloo, N.; Matkan, A.A.; Alimohammadi, A.; Aghighi, H.; Mirbagheri, B. Estimating the Agricultural Farm Soil Moisture Using Spectral Indices of Landsat 8, and Sentinel-1, and Artificial Neural Networks. J. Geovisualization Spat. Anal.
**2022**, 6, 1–12. [Google Scholar] [CrossRef] - Han, H.; Choi, C.; Kim, J.; Morrison, R.R.; Jung, J.; Kim, H.S.; Han, H.; Choi, C.; Kim, J.; Morrison, R.R.; et al. Multiple-Depth Soil Moisture Estimates Using Artificial Neural Network and Long Short-Term Memory Models. Water
**2021**, 13, 2584. [Google Scholar] [CrossRef] - Yu, Z.; Liu, D.; Lü, H.; Fu, X.; Xiang, L.; Zhu, Y. A Multi-Layer Soil Moisture Data Assimilation Using Support Vector Machines and Ensemble Particle Filter. J. Hydrol.
**2012**, 475, 53–64. [Google Scholar] [CrossRef] - Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil Moisture Prediction Using Support Vector Machines. J. Am. Water Resour. Assoc.
**2006**, 42, 1033–1046. [Google Scholar] [CrossRef] - Kashif Gill, M.; Kemblowski, M.W.; McKee, M. Soil Moisture Data Assimilation Using Support Vector Machines and Ensemble Kalman Filter. J. Am. Water Resour. Assoc.
**2007**, 43, 1004–1015. [Google Scholar] [CrossRef] - He, B.; Jia, B.; Zhao, Y.; Wang, X.; Wei, M.; Dietzel, R. Estimate Soil Moisture of Maize by Combining Support Vector Machine and Chaotic Whale Optimization Algorithm. Agric. Water Manag.
**2022**, 267, 107618. [Google Scholar] [CrossRef] - Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability
**2023**, 15, 15444. [Google Scholar] [CrossRef] - Nie, W.; Kumar, S.V.; Bindlish, R.; Liu, P.W.; Wang, S. Remote Sensing-Based Vegetation and Soil Moisture Constraints Reduce Irrigation Estimation Uncertainty. Environ. Res. Lett.
**2022**, 17, 084010. [Google Scholar] [CrossRef] - Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens.
**2020**, 12, 3783. [Google Scholar] [CrossRef] - Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ.
**2020**, 236, 111402. [Google Scholar] [CrossRef] - Flores-Carrillo, D.A.; Sánchez-Fernández, L.P.; Sánchez-Pérez, L.A.; Carbajal-Hernández, J.J. Soil Moisture Fuzzy Estimation Approach Based on Decision-Making. Environ. Model. Softw.
**2017**, 91, 223–240. [Google Scholar] [CrossRef] - Mahmoudi, N.; Majidi, A.; Jamei, M.; Jalali, M.; Maroufpoor, S.; Shiri, J.; Yaseen, Z.M. Mutating Fuzzy Logic Model with Various Rigorous Meta-Heuristic Algorithms for Soil Moisture Content Estimation. Agric. Water Manag.
**2022**, 261, 107342. [Google Scholar] [CrossRef] - Jing, M.; Wu, J. Fast Image Interpolation Using Directional Inverse Distance Weighting for Real-Time Applications. Opt. Commun.
**2013**, 286, 111–116. [Google Scholar] [CrossRef] - Zhang, Y.; Xian, C.; Chen, H.; Grieneisen, M.L.; Liu, J.; Zhang, M. Spatial Interpolation of River Channel Topography Using the Shortest Temporal Distance. J. Hydrol.
**2016**, 542, 450–462. [Google Scholar] [CrossRef] - Shtiliyanova, A.; Bellocchi, G.; Borras, D.; Eza, U.; Martin, R.; Carrère, P. Kriging-Based Approach to Predict Missing Air Temperature Data. Comput. Electron. Agric.
**2017**, 142, 440–449. [Google Scholar] [CrossRef] - Ohmer, M.; Liesch, T.; Goeppert, N.; Goldscheider, N. On the Optimal Selection of Interpolation Methods for Groundwater Contouring: An Example of Propagation of Uncertainty Regarding Inter-Aquifer Exchange. Adv. Water Resour.
**2017**, 109, 121–132. [Google Scholar] [CrossRef] - Welcome to the QGIS Project! Available online: https://qgis.org/en/site/ (accessed on 22 December 2023).
- Sridhar, V.; Hubbard, K.G.; You, J.; Hunt, E.D. Development of the Soil Moisture Index to Quantify Agricultural Drought and Its “User Friendliness” in Severity-Area-Duration Assessment. J. Hydrometeorol.
**2008**, 9, 660–676. [Google Scholar] [CrossRef] - Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol.
**2005**, 133, 69–88. [Google Scholar] [CrossRef] - WCA 2020 | World Programme for the Census of Agriculture | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/world-census-agriculture/wcarounds/wca2020/en/ (accessed on 28 November 2023).
- Liu, D.; Yu, Z.B.; Lü, H.S. Data Assimilation Using Support Vector Machines and Ensemble Kalman Filter for Multi-Layer Soil Moisture Prediction. Water Sci. Eng.
**2010**, 3, 361–377. [Google Scholar] [CrossRef] - Munro, R.K.; Lyons, W.F.; Shao, Y.; Wood, M.S.; Hood, L.M.; Leslie, L.M. Modelling Land Surface–Atmosphere Interactions over the Australian Continent with an Emphasis on the Role of Soil Moisture. Environ. Model. Softw.
**1998**, 13, 333–339. [Google Scholar] [CrossRef] - Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color Enhancement of Highly Correlated Images. I. Decorrelation and HSI Contrast Stretches. Remote Sens. Environ.
**1986**, 20, 209–235. [Google Scholar] [CrossRef] - Saʇ, T.; Çunkaş, M. Color Image Segmentation Based on Multiobjective Artificial Bee Colony Optimization. Appl. Soft Comput.
**2015**, 34, 389–401. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy Sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] - Giorgio, G.A.; Ragosta, M.; Telesca, V. Application of a Multivariate Statistical Index on Series of Weather Measurements at Local Scale. Measurement
**2017**, 112, 61–66. [Google Scholar] [CrossRef] - Sheeren, D.; Bastin, N.; Ouin, A.; Ladet, S.; Balent, G.; Lacombe, J.P. Discriminating Small Wooded Elements in Rural Landscape from Aerial Photography: A Hybrid Pixel/Object-Based Analysis Approach. Int. J. Remote Sens.
**2009**, 30, 4979–4990. [Google Scholar] [CrossRef] - Aksoy, S.; Akçay, H.G.; Wassenaar, T. Automatic Mapping of Linear Woody Vegetation Features in Agricultural Landscapes Using Very High Resolution Imagery. IEEE Trans. Geosci. Remote Sens.
**2010**, 48, 511–522. [Google Scholar] [CrossRef] - Eckert, S.; Tesfay Ghebremicael, S.; Hurni, H.; Kohler, T. Identification and Classification of Structural Soil Conservation Measures Based on Very High Resolution Stereo Satellite Data. J. Environ. Manag.
**2017**, 193, 592–606. [Google Scholar] [CrossRef] [PubMed] - Persson, M. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone J.
**2005**, 4, 1119–1122. [Google Scholar] [CrossRef] - Sadeghi, M.; Jones, S.B.; Philpot, W.D. A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands. Remote Sens. Environ.
**2015**, 164, 66–76. [Google Scholar] [CrossRef] - Mora, M.; Avila, F.; Carrasco-Benavides, M.; Maldonado, G.; Olguín-Cáceres, J.; Fuentes, S. Automated Computation of Leaf Area Index from Fruit Trees Using Improved Image Processing Algorithms Applied to Canopy Cover Digital Photograpies. Comput. Electron. Agric.
**2016**, 123, 195–202. [Google Scholar] [CrossRef] - Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of Leaf Area Index in Eucalypt Forest Using Digital Photography. Agric. For. Meteorol.
**2007**, 143, 176–188. [Google Scholar] [CrossRef] - Chianucci, F.; Disperati, L.; Guzzi, D.; Bianchini, D.; Nardino, V.; Lastri, C.; Rindinella, A.; Corona, P. Estimation of Canopy Attributes in Beech Forests Using True Colour Digital Images from a Small Fixed-Wing UAV. Int. J. Appl. Earth Obs. Geoinf.
**2016**, 47, 60–68. [Google Scholar] [CrossRef] - Mokhtarzade, M.; Zoej, M.J.V. Road Detection from High-Resolution Satellite Images Using Artificial Neural Networks. Int. J. Appl. Earth Obs. Geoinf.
**2007**, 9, 32–40. [Google Scholar] [CrossRef] - Niu, X. A Semi-Automatic Framework for Highway Extraction and Vehicle Detection Based on a Geometric Deformable Model. ISPRS J. Photogramm. Remote Sens.
**2006**, 61, 170–186. [Google Scholar] [CrossRef] - Gillespie, A.R. Enhancement of Multispectral Thermal Infrared Images: Decorrelation Contrast Stretching. Remote Sens. Environ.
**1992**, 42, 147–155. [Google Scholar] [CrossRef]

**Figure 1.**Operation of a soil moisture regional estimation based on the point estimation model [35].

**Figure 5.**Region of interest under decorrelation. (

**a**) For obtaining grassland, tree-covered areas, and buildings. (

**b**) For obtaining elevation and spatial configuration.

**Figure 10.**Error ${E}_{RMS}$ comparison of weather conditions (rain): adjusted ${Ca}_{2}^{r}$ and interpolated ${CI}_{2}^{r}$ at checkpoints ${P}^{3}$, ${P}^{4}$, ${P}^{5}$, ${P}^{8}$, and ${P}^{15}$.

**Figure 12.**Error ${E}_{RMS}$ of weather conditions adjusted ${Ca}_{i=1,2,\dots ,5}^{r}$ at checkpoints ${P}^{r=1,2,\dots ,17}$.

Type | $\mathbf{Field}\mathbf{Capacity}(\mathbf{FC})\left({\mathbf{m}}^{3}/{\mathbf{m}}^{3}\right)$ | $\mathbf{Available}\mathbf{Water}\mathbf{Content}(\mathbf{AWC})\left({\mathbf{m}}^{3}/{\mathbf{m}}^{3}\right)$ |
---|---|---|

$\mathrm{I}$ | $FC\le 0.21$ | $AWC\le 0.08$ |

$\mathrm{I}\mathrm{I}$ | $0.21<FC\le $ 0.44 | $0.08<AWC\le 0.21$ |

$\mathrm{I}\mathrm{I}\mathrm{I}$ | $0.44<FC$ | $0.21<AWC$ |

${\mathit{C}}_{\mathit{i}=\mathrm{1,2},\dots ,\mathit{I}}^{0}$ | Variable | Units | $\mathbf{Value}({\mathit{v}}_{\mathit{i}}$) |
---|---|---|---|

${C}_{1}^{0}$ | Temperature $(T)$ | $\xb0\mathrm{C}$ | 18.1 |

${C}_{2}^{0}$ | Rain $(R)$ | $\mathrm{m}\mathrm{m}$ | 0 |

${C}_{3}^{0}$ | Solar radiation $(Sr)$ | $\mathrm{W}/{\mathrm{m}}^{2}$ | 890 |

${C}_{4}^{0}$ | Wind speed $(Ws)$ | $\mathrm{K}\mathrm{m}/\mathrm{h}$ | 16 |

${C}_{5}^{0}$ | Evapotranspiration ($Et)$ | $\mathrm{m}\mathrm{m}/\mathrm{d}$ | 5 |

**Table 3.**Universe of the discourse of all measured weather conditions ${C}_{i=\mathrm{1,2},\dots ,I}^{0}$.

$\mathbf{Weather}\mathbf{Condition}({\mathit{C}}_{\mathit{i}}^{0})$ | Variable | $\mathbf{Universe}\mathbf{of}\mathbf{Discourse}({\mathit{V}}_{\mathit{i}}$) |
---|---|---|

${C}_{1}^{0}$ | Temperature $(\xb0\mathrm{C})$ | ${V}_{1}=\left[0,40\right]$ |

${C}_{2}^{0}$ | Rain $(\mathrm{mm})$ | ${V}_{2}=\left[0,25\right]$ |

${C}_{3}^{0}$ | Solar Radiation $(\mathrm{W}/{\mathrm{m}}^{2})$ | ${V}_{3}=\left[0,1250\right]$ |

${C}_{4}^{0}$ | Wind Speed $(\mathrm{km}/\mathrm{h})$ | ${V}_{4}=\left[0,50\right]$ |

${C}_{5}^{0}$ | Evapotranspiration ($\mathrm{mm}/\mathrm{d})$ | ${V}_{5}=\left[0,10\right]$ |

Linguistic Value | Function | ${\mathit{C}}_{\mathit{i}=1}^{0}$ | ${\mathit{C}}_{\mathit{i}=2}^{0}$ | ${\mathit{C}}_{\mathit{i}=3}^{0}$ | ${\mathit{C}}_{\mathit{i}=4}^{0}$ | ${\mathit{C}}_{\mathit{i}=5}^{0}$ |
---|---|---|---|---|---|---|

Lower | L | (0, 6) | $\left(0,1\right)$ | $\left(0,140\right)$ | $\left(0,6\right)$ | $\left(0,1\right)$ |

Low | Triangle | (5, 10, 15) | $\left(0.8,1.5,2.2\right)$ | $\left(120,180,240\right)$ | $\left(4,8,12\right)$ | $\left(0.6,1.6,2.6\right)$ |

Medium | Triangle | (14, 20, 24) | $\left(1.9,3.8,6\right)$ | $\left(220,400,580\right)$ | $\left(10,15,20\right)$ | $\left(2.3,3.3,4.3\right)$ |

High | Triangle | (22, 27, 32) | $\left(5,8,12\right)$ | $\left(560,700,840\right)$ | $\left(18,25,32\right)$ | $\left(4,5,6\right)$ |

Higher | Gamma | (30, 35) | $\left(10,18\right)$ | $\left(800,1000\right)$ | $\left(30,35\right)$ | $\left(5.7,6.7\right)$ |

**Table 5.**Membership functions of a particular feature ${\varphi}_{e=1}^{0}{-\varphi}_{e=1}^{r}$ (grassland).

Linguistic Value | Function Type | $\mathbf{Parameters}\mathbf{in}\mathbf{Percentage}(\mathit{f},\mathit{g},\mathit{h})$ |
---|---|---|

Lower | L | (−60, −20) |

Equal | Triangle | (−25, 0, 25) |

Higher | Gamma | (20, 60) |

$\mathbf{Output}\mathbf{Function}{\mathit{\lambda}}_{0=\mathrm{1,2},\dots ,\mathit{O}}$ | Linguistic Label | Function Type | $\mathbf{Parameters}(\mathit{f},\mathit{g})\mathit{o}\mathit{r}(\mathit{f},\mathit{g},\mathit{h})$ |
---|---|---|---|

${\lambda}_{o,1}$ | Low | L | (−0.3, −0.15) |

${\lambda}_{o,2}$ | Barely Low | Triangle | (−0.17, −0.1, −0.03) |

${\lambda}_{\mathrm{0,3}}$ | Null | Triangle | (−0.05, 0, 0.05) |

${\lambda}_{o,4}$ | Barely High | Triangle | (0.03, 0.1, 0.17) |

${\lambda}_{o,5}$ | High | Gamma | (0.15, 0.3) |

$\mathbf{Output}\mathbf{Function}{\mathit{\omega}}_{0=\mathrm{1,2},\dots ,\mathit{O}}$ | Linguistic Label | Function | $(\mathit{f},\mathit{g})\mathit{o}\mathit{r}(\mathit{f},\mathit{g},\mathit{h})$ |
---|---|---|---|

${\mathsf{\omega}}_{\mathrm{i},1}$ | Low | L | (0.8, 0.85) |

${\mathsf{\omega}}_{\mathrm{i},2}$ | Barely Low | Triangle | (0.84, 0.9, 0.94) |

${\mathsf{\omega}}_{\mathrm{i},3}$ | Null | Triangle | (0.93, 1, 1.05) |

${\mathsf{\omega}}_{\mathrm{i},4}$ | Barely High | Triangle | (1.04, 1.1, 1.16) |

${\mathsf{\omega}}_{\mathrm{i},5}$ | High | Gamma | (1.15, 1.2) |

Weather Condition | $\mathbf{Primary}\mathbf{Checkpoint}{\mathit{P}}^{0}$ | $\mathbf{Checkpoint}{\mathit{P}}^{4}$ | ||
---|---|---|---|---|

$\mathbf{Measured}{\mathit{C}}_{\mathit{i}}^{0}$ | $\mathbf{Adjusted}{\mathit{C}\mathit{a}}_{\mathit{i}}^{4}$ | $\mathbf{Measured}{\mathit{C}\mathit{m}}_{\mathit{i}}^{4}$ | ||

$i=1$ | Temperature $(\xb0\mathrm{C})$ | 18.1 | 19.9878 | 19 |

$i=2$ | Rain (mm) | 0 | 0 | 0 |

$i=3$ | Solar radiation (W/m^{2}) | 890 | 982.8276 | 916 |

$i=4$ | Wind speed (km/h) | 16 | 15.9935 | 18.2 |

$i=5$ | Evapotranspiration (mm/d) | 5 | 5.249 | 5.2 |

**Table 9.**IWeCASF performance comparison through the error $\left({E}_{RMS}\right)$: for the weather condition adjusted ${Ca}_{i}^{4}$ (temperature) at ${P}^{4}$ during the preliminary tests to define the initial parameters.

$\mathbf{Size}\mathbf{of}\mathbf{Sector}\mathbf{s}\left(\mathit{x},\mathit{y}\right)$ | Image Resolution | % of Not Assigned Pixels (%NAP) | |||
---|---|---|---|---|---|

Test Parameters | $\mathbf{Error}{\mathit{E}}_{\mathit{R}\mathit{M}\mathit{S}}$ | Test Parameters | $\mathbf{Error}{\mathit{E}}_{\mathit{R}\mathit{M}\mathit{S}}$ | Test Parameters | $\mathbf{Error}{\mathit{E}}_{\mathit{R}\mathit{M}\mathit{S}}$ |

$15\times 15\mathrm{m}$ | 0.0408 | $500\times 430$ | 0.0591 | $5\le \%NAP$ | 0.0639 |

$20\times 20\mathrm{m}$ | 0.0410 | $800\times 688$ | 0.0443 | $3\le \%\mathrm{N}\mathrm{A}\mathrm{P}<5$ | 0.0537 |

$40\times 40\mathrm{m}$ | 0.0412 | $1450\times 1247$ | 0.0412 | $1.5\le \%\mathrm{N}\mathrm{A}\mathrm{P}<3$ | 0.0489 |

$60\times 60\mathrm{m}$ | 0.0502 | $2000\times 1720$ | 0.0408 | $\%\mathrm{N}\mathrm{A}\mathrm{P}<1.5$ | 0.0408 |

**Table 10.**Comparison of weather conditions (temperature) adjusted ${Ca}_{1}^{4}$, measured ${Cm}_{1}^{4}$, and interpolated ${CI}_{1}^{4}$.

Test | ${\mathit{C}\mathit{a}}_{1}^{4}$$(\xb0\mathbf{C}$) | ${\mathit{C}\mathit{m}}_{1}^{4}$$(\xb0\mathbf{C}$) | ${\mathit{C}\mathit{I}}_{1}^{4}$$(\xb0\mathbf{C}$) |
---|---|---|---|

A | 10.61 | 11 | 10.89 |

B | 14.43 | 12.9 | 13.8 |

C | 15.81 | 14.7 | 14.5 |

D | 19.07 | 21 | 21.1 |

E | 18.97 | 18.5 | 19.97 |

F | 17.32 | 17 | 15.4 |

G | 27.4 | 27.8 | 27.77 |

H | 17.76 | 18 | 18.25 |

I | 18.99 | 20 | 20.96 |

J | 16.92 | 17.6 | 16.2 |

K | 12.9 | 12.7 | 13.03 |

L | 14.36 | 14.2 | 14.47 |

M | 13.5 | 12.8 | 11.83 |

N | 19.05 | 20.1 | 19.95 |

O | 20.77 | 21 | 20.88 |

P | 30 | 29.5 | 29.4 |

**Table 11.**Comparison of weather conditions (rain) adjusted ${Ca}_{2}^{4}$, measured ${Cm}_{2}^{4}$, and interpolated ${CI}_{2}^{4}$.

Test | ${\mathit{C}\mathit{a}}_{2}^{4}$$(\mathbf{m}\mathbf{m}$) | ${\mathit{C}\mathit{m}}_{2}^{4}$$(\mathbf{m}\mathbf{m}$) | ${\mathit{C}\mathit{I}}_{2}^{4}$$(\mathbf{m}\mathbf{m}$) |
---|---|---|---|

A | 3.02 | 3 | 3.2 |

B | 3 | 3.4 | 3.62 |

C | 13.17 | 13.6 | 13.5 |

D | 0.9 | 0.8 | 0.97 |

E | 0.35 | 0.4 | 0.58 |

F | 7.45 | 6.8 | 7.5 |

G | 9 | 9.4 | 10.47 |

H | 8.54 | 8.1 | 7.31 |

I | 0 | 0.2 | 0 |

J | 0.65 | 0.8 | 0.6 |

K | 1.05 | 0.8 | 1.01 |

L | 18.74 | 18.4 | 18.98 |

M | 2.5 | 2.8 | 3.04 |

N | 5 | 5.8 | 6.24 |

O | 5.12 | 4.6 | 4.97 |

P | 1.09 | 0.8 | 0.62 |

**Table 12.**Comparison of weather conditions (solar radiation) adjusted ${Ca}_{3}^{4}$, measured ${Cm}_{3}^{4}$, and interpolated ${CI}_{3}^{4}$.

Test | ${\mathit{C}\mathit{a}}_{3}^{4}$$(\raisebox{1ex}{$\mathbf{W}$}\!\left/ \!\raisebox{-1ex}{${\mathbf{m}}^{2}$}\right.$) | ${\mathit{C}\mathit{m}}_{3}^{4}$$(\raisebox{1ex}{$\mathbf{W}$}\!\left/ \!\raisebox{-1ex}{${\mathbf{m}}^{2}$}\right.$) | ${\mathit{C}\mathit{I}}_{3}^{4}$$(\raisebox{1ex}{$\mathbf{W}$}\!\left/ \!\raisebox{-1ex}{${\mathbf{m}}^{2}$}\right.$) |
---|---|---|---|

A | 242.26 | 250 | 239.81 |

B | 396.37 | 400 | 409.12 |

C | 473.91 | 497 | 472.79 |

D | 515.10 | 515 | 527.87 |

E | 451.02 | 438 | 464.74 |

F | 245.29 | 227 | 229.51 |

G | 343.29 | 346 | 346.78 |

H | 230.70 | 230 | 238.71 |

I | 308.16 | 306 | 317.83 |

J | 286.55 | 275 | 296.42 |

K | 85.57 | 97 | 98.59 |

L | 282.23 | 263 | 266.69 |

M | 177.45 | 157 | 159.3 |

N | 255.23 | 265 | 263.25 |

O | 824.59 | 815 | 818.12 |

P | 988.17 | 984 | 975.48 |

**Table 13.**Comparison of weather conditions (wind speed) adjusted ${Ca}_{4}^{4}$, measured ${Cm}_{4}^{4}$, and interpolated ${CI}_{4}^{4}$.

Test | ${\mathit{C}\mathit{a}}_{4}^{4}$$(\raisebox{1ex}{$\mathbf{K}\mathbf{m}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{h}$}\right.$) | ${\mathit{C}\mathit{m}}_{4}^{4}$$(\raisebox{1ex}{$\mathbf{K}\mathbf{m}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{h}$}\right.$) | ${\mathit{C}\mathit{I}}_{4}^{4}$$(\raisebox{1ex}{$\mathbf{K}\mathbf{m}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{h}$}\right.)$ |
---|---|---|---|

A | 6.32 | 6 | 5.85 |

B | 5.92 | 7 | 8.59 |

C | 8.20 | 10 | 10.28 |

D | 5.75 | 5 | 5.58 |

E | 5.46 | 5 | 5.24 |

F | 4.17 | 4 | 4.23 |

G | 13.58 | 13 | 14.03 |

H | 5.278 | 7 | 9.59 |

I | 0.5 | 1 | 2.14 |

J | 15.69 | 14 | 15.37 |

K | 2.38 | 2 | 2.19 |

L | 7.51 | 7 | 8.12 |

M | 18.16 | 18 | 18.23 |

N | 14.06 | 13 | 14.19 |

O | 4.76 | 4 | 3.69 |

P | 6.7 | 6 | 6.48 |

**Table 14.**Comparison of weather conditions (evapotranspiration) adjusted ${Ca}_{5}^{4}$, measured ${Cm}_{5}^{4}$, and interpolated ${CI}_{5}^{4}$.

Test | ${\mathit{C}\mathit{a}}_{5}^{4}$$(\mathbf{m}\mathbf{m}$) | ${\mathit{C}\mathit{m}}_{5}^{4}$$(\mathbf{m}\mathbf{m}$) | ${\mathit{C}\mathit{I}}_{5}^{4}$$(\mathbf{m}\mathbf{m}$) |
---|---|---|---|

A | 2.95 | 3 | 2.98 |

B | 3.84 | 3.5 | 3.41 |

C | 5.23 | 5.2 | 5.29 |

D | 6.24 | 6.5 | 5.95 |

E | 4.69 | 4.5 | 4.22 |

F | 2.76 | 2.7 | 2.76 |

G | 3.45 | 3.5 | 3.55 |

H | 2.78 | 2.8 | 2.69 |

I | 3.62 | 3.9 | 4.05 |

J | 2.8 | 3 | 2.89 |

K | 3.14 | 3.4 | 3.29 |

L | 5.07 | 5 | 5.2 |

M | 4.9 | 4.9 | 4.92 |

N | 3.28 | 3.2 | 3.09 |

O | 4.85 | 4.7 | 4.69 |

P | 3.79 | 3.7 | 3.79 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sánchez-Fernández, L.P.; Flores-Carrillo, D.A.; Sánchez-Pérez, L.A.
Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation. *Mathematics* **2024**, *12*, 152.
https://doi.org/10.3390/math12010152

**AMA Style**

Sánchez-Fernández LP, Flores-Carrillo DA, Sánchez-Pérez LA.
Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation. *Mathematics*. 2024; 12(1):152.
https://doi.org/10.3390/math12010152

**Chicago/Turabian Style**

Sánchez-Fernández, Luis Pastor, Diego Alberto Flores-Carrillo, and Luis Alejandro Sánchez-Pérez.
2024. "Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation" *Mathematics* 12, no. 1: 152.
https://doi.org/10.3390/math12010152