On the Mishou Theorem for Zeta-Functions with Periodic Coefficients
Abstract
:1. Introduction
2. Approximation in the Mean
- is the union of the sets ;
- for all ;
- For every compact set , there exists such that .
3. Limit Theorem
4. Proof of Theorem 1
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1877. [Google Scholar]
- Laurinčikas, A.; Šiaučiūnas, D. Remarks on the universality of the periodic zeta-functions. Math. Notes 2006, 80, 532–538. [Google Scholar] [CrossRef]
- Kaczorowski, J. Some remarks on the universality of periodic L-functions. In New Directions in Value-Distribution Theory of Zeta and L-Functions, Proceedings of the Würzburg Conference; Steuding, R., Steuding, J., Eds.; Shaker Verlag: Aachen, Germany, 2009; pp. 113–120. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Voronin, S.M. Analytic Properties of Arithmetic Objects. Ph.D. Thesis, V.A. Steklov Math. Inst., Moscow, Russia, 1977. [Google Scholar]
- Balčiūnas, A.; Dubickas, A.; Laurinčikas, A. On the Hurwitz zeta-function with algebraic irrational parameter. Math. Notes 2019, 105, 173–179. [Google Scholar] [CrossRef]
- Laurinčikas, A. “Almost” universality of the Lerch zeta-function. Math. Commun. 2019, 24, 107–118. [Google Scholar]
- Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Javtokas, A.; Laurinčikas, A. On the periodic Hurwitz zeta-function. Hardy-Ramanujan J. 2006, 29, 18–36. [Google Scholar] [CrossRef]
- Javtokas, A.; Laurinčikas, A. Universality of the periodic Hurwitz zeta-function. Integral Transforms Spec. Funct. 2006, 17, 711–722. [Google Scholar] [CrossRef]
- Franckevič, V.; Laurinčikas, A.; Šiaučiūnas, D. On approximation of analytic functions by periodic Hurwitz zeta-functions. Math. Model. Anal. 2019, 24, 20–33. [Google Scholar]
- Laurinčikas, A.; Macaitienė, R.; Mochov, D.; Šiaučiūnas, D. Universality of the periodic Hurwitz zeta-function with rational parameter. Sib. Math. J. 2018, 59, 894–900. [Google Scholar] [CrossRef]
- Mishou, H. The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions. Lith. Math. J. 2007, 47, 32–47. [Google Scholar] [CrossRef]
- Kačinskaitė, R.; Laurinčikas, A. The joint distribution of periodic zeta-functions. Studia Sci. Math. Hungar. 2011, 48, 257–279. [Google Scholar] [CrossRef]
- Laurinčikas, A. On the Mishou theorem with algebraic parameter. Siber. Math. J. 2019, 60, 1075–1082. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint universality of zeta-functions with periodic coefficients. Izv. Math. 2010, 74, 515–539. [Google Scholar] [CrossRef]
- Janulis, K.; Laurinčikas, A.; Macaitienė, R.; Šiaučiūnas, D. Joint universality of Dirichlet L-functions and periodic Hurwitz zeta-functions. Math. Model. Anal. 2012, 17, 673–685. [Google Scholar] [CrossRef]
- Javtokas, A.; Laurinčikas, A. A joint universality theorem for periodic Hurwitz zeta-functions. Bull. Austral. Math. Soc. 2008, 78, 13–33. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Skerstonaitė, S. A joint universality theorem for periodic Hurwitz zeta-functions. II. Lith. Math. J. 2009, 49, 287–296. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. A weighted version of the Mishou theorem. Math. Modell. Anal. 2021, 26, 21–33. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. Weighted discrete universality of the Riemann zeta-function. Math. Modell. Anal. 2020, 25, 21–36. [Google Scholar] [CrossRef]
- Buivydas, E.; Laurinčikas, A. A discrete version of the Mishou theorem. Ramanujan J. 2015, 38, 331–347. [Google Scholar] [CrossRef]
- Buivydas, E.; Laurinčikas, A. A generalized joint discrete universality theorem for Riemann and Hurwitz zeta-functions. Lith. Math. J. 2015, 55, 193–206. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete universality for periodic zeta-functions. Quaest. Math. 2019, 42, 687–699. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete universality for periodic zeta-functions. II. Quaest. Math. 2020, 43, 1765–1779. [Google Scholar]
- Laurinčikas, A.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. Nonlinear Anal. Model. Control 2020, 25, 860–883. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R.; Laurinčikas, A. The discrete universality of the periodic Hurwitz zeta-function. Integral Transforms Spec. Funct. 2009, 20, 673–686. [Google Scholar] [CrossRef]
- Laurinčikas, A. On discrete universality of the Hurwitz zeta-function. Results Math. 2017, 72, 907–917. [Google Scholar] [CrossRef]
- Sander, J.; Steuding, J. Joint universality for Euler products of Dirichlet L-functions. Analysis 2006, 26, 295–312. [Google Scholar]
- Tychonoff, A. Über einen Funktionenraum. Math. Ann. 1935, 111, 762–766. [Google Scholar] [CrossRef]
- Laurinčikas, A. Approximation of analytic functions by an absolutely convergent Dirichlet series. Arch. Math. 2021, 117, 53–63. [Google Scholar] [CrossRef]
- Jasas, M.; Laurinčikas, A.; Šiaučiūnas, D. On the approximation of analytic functions by shifts of an absolutely convergent Dirichlet series. Math. Notes 2021, 109, 876–883. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D. Discrete approximation by a Dirichlet series connected to the Riemann zeta-function. Mathematics 2021, 9, 1073. [Google Scholar] [CrossRef]
- Jasas, M.; Laurinčikas, A.; Stoncelis, M.; Šiaučiūnas, D. Discrete universality of absolutely convergent Dirichlet series. Math. Model. Anal. 2022, 27, 78–87. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Mergelyan, S.N. Uniform approximations to functions of a complex variable. In American Mathematical Society Translations; no. 101; Mathematical Association of America: Providence, RI, USA, 1954. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiūnas, A.; Jasas, M.; Macaitienė, R.; Šiaučiūnas, D. On the Mishou Theorem for Zeta-Functions with Periodic Coefficients. Mathematics 2023, 11, 2042. https://doi.org/10.3390/math11092042
Balčiūnas A, Jasas M, Macaitienė R, Šiaučiūnas D. On the Mishou Theorem for Zeta-Functions with Periodic Coefficients. Mathematics. 2023; 11(9):2042. https://doi.org/10.3390/math11092042
Chicago/Turabian StyleBalčiūnas, Aidas, Mindaugas Jasas, Renata Macaitienė, and Darius Šiaučiūnas. 2023. "On the Mishou Theorem for Zeta-Functions with Periodic Coefficients" Mathematics 11, no. 9: 2042. https://doi.org/10.3390/math11092042
APA StyleBalčiūnas, A., Jasas, M., Macaitienė, R., & Šiaučiūnas, D. (2023). On the Mishou Theorem for Zeta-Functions with Periodic Coefficients. Mathematics, 11(9), 2042. https://doi.org/10.3390/math11092042