Hurwitz Zeta Function Is Prime
Abstract
:1. Introduction and Preliminaries
2. Proofs of Theorems
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenbloom, P.C. The fix-points of entire functions. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952, 186–192. [Google Scholar]
- Gross, F. On factorization of meromorphic functions. Trans. Am. Math. Soc. 1968, 131, 215–222. [Google Scholar] [CrossRef]
- Liao, L.; Yang, C.C. On some new properties of the gamma function and the Riemann zeta function. Math. Nachrichten 2003, 257, 59–66. [Google Scholar] [CrossRef]
- Hurwitz, A. Einige Eigenschaften der Dirichlet uschen Funktionen F(s)=∑() · , die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Z. Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Undergraduate Texts in Mathematics; Springer: New York, NY, USA; Heidelberg, Germany, 1976. [Google Scholar]
- Laurinčikas, A. On universality of the Riemann and Hurwitz zeta functions. Results Math. 2022, 77, 29. [Google Scholar] [CrossRef]
- Sourmelidis, A.; Steuding, J. On the value-distribution of Hurwitz zeta functions with algebraic parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Fejzullahu, B. On the Poincaré expansion of the Hurwitz zeta function. Lith. Math. J. 2021, 61, 460–470. [Google Scholar] [CrossRef]
- Nevanlinna, R. Zur theorie der meromorphen funktionen. Acta Math. 1925, 46, 1–99. [Google Scholar] [CrossRef]
- Chuang, C.T.; Yang, C.C. Fix-Points and Factorization of Meromorphic Functions; World Scientific Publishing Co., Inc.: Teaneck, NJ, USA, 1990; pp. x+227, (Translated from the Chinese). [Google Scholar]
- Saoudi, B.; Boutabaa, A.; Zerzaihi, T. On factorization of p-adic meromorphic functions. Indag. Math. (N. S.) 2020, 31, 921–933. [Google Scholar] [CrossRef]
- Ye, Z. The Nevanlinna functions of the Riemann Zeta-function. J. Math. Anal. Appl. 1999, 233, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2007; Volume 1877, pp. xiv+317. [Google Scholar]
- Garunkštis, R.; Steuding, J. On primeness of the Selberg zeta function. Hokkaido Math. J. 2020, 49, 451–462. [Google Scholar] [CrossRef]
- Garunkštis, R. Selberg zeta function associated with compact Riemann surface is prime. Rev. Union Matemahica Argent. 2021, 62, 213–218. [Google Scholar] [CrossRef]
- Chuang, C. Several Topics in Theory of One Complex Variable; Science Press: Beijing, China, 1995. [Google Scholar]
- Lerch, M. Note on the fonction K(w,x,s) = . Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Garunkštis, R. Approximation of the Lerch zeta function. Lith. Math. J. 2004, 44, 140–144. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; The Clarendon Press, Oxford University Press: New York, NY, USA, 1986; pp. x+412. [Google Scholar]
- Hayman, W.K. Meromorphic Functions; Oxford Mathematical Monographs, Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Spira, R. Zeros of Hurwitz zeta functions. Math. Comp. 1976, 30, 863–866. [Google Scholar] [CrossRef]
- Garunkštis, R.; Steuding, J. On the distribution of zeros of the Hurwitz zeta function. Math. Comp. 2007, 76, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Conway, J. Functions of One Complex Variable; Springer: New York, NY, USA, 1973. [Google Scholar]
- Milnor, J. Dynamics in One Complex Variable, 3rd ed.; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 2006; Volume 160, pp. viii+304. [Google Scholar]
- Kratsios, A.; Papon, L. Universal approximation theorems for differentiable geometric deep learning. J. Mach. Learn. Res. 2022, 23, 1–73. [Google Scholar]
- Fong, B.; Spivak, D.I. An Invitation to Applied Category Theory; Seven Sketches in Compositionality; Cambridge University Press: Cambridge, UK, 2019; pp. xii+338. [Google Scholar]
- Katz, J.; Lindell, Y. Introduction to Modern Cryptography, 3rd ed.; Chapman & Hall/CRC Cryptography and Network Security, CRC Press: Boca Raton, FL, USA, 2021; pp. xx+626. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dundulis, M.; Garunkštis, R.; Karikovas, E.; Šimėnas, R. Hurwitz Zeta Function Is Prime. Mathematics 2023, 11, 1150. https://doi.org/10.3390/math11051150
Dundulis M, Garunkštis R, Karikovas E, Šimėnas R. Hurwitz Zeta Function Is Prime. Mathematics. 2023; 11(5):1150. https://doi.org/10.3390/math11051150
Chicago/Turabian StyleDundulis, Marius, Ramūnas Garunkštis, Erikas Karikovas, and Raivydas Šimėnas. 2023. "Hurwitz Zeta Function Is Prime" Mathematics 11, no. 5: 1150. https://doi.org/10.3390/math11051150
APA StyleDundulis, M., Garunkštis, R., Karikovas, E., & Šimėnas, R. (2023). Hurwitz Zeta Function Is Prime. Mathematics, 11(5), 1150. https://doi.org/10.3390/math11051150