Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
Abstract
:1. Definitions and Preliminaries
2. Boundaries for the Class Coefficients
3. Corollaries and Consequences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires présentes par divers savants a laAcadémie des; Académie des Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1–8, 85–89. [Google Scholar] [CrossRef]
- Lewin, M. On a Coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. USA 1967, 18, 1967. [Google Scholar] [CrossRef]
- Illafe, M.; Yousef, F.; Haji Mohd, M.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szego Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 2023, 15, 576. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete-Szego Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef] [Green Version]
- Alsoboh, A.; Darus, M. Certain subclass of meromorphic functions involving q-Ruscheweyh operator. Transylv. J. Math. Mech. 2019, 11, 1–8. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete-Szego Problem Associated with q-derivative Operator. J. Phys. Conf. Ser. 2019, 1212, 012003. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials. Asia Pac. J. Math. 2017, 4, 90–99. [Google Scholar]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi. Sad J. Math. 2013, 43, 59–65. [Google Scholar]
- Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Bain, L.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Duxburry Press: Belmont, CA, USA, 1992. [Google Scholar]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Castellares, F.; Ferrari, S.L.; Lemonte, A.J. On the Bell distribution and its associated regression model for count data. Appl. Math. Model. 2018, 56, 172–185. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential Numbers. Am. Math. Mon. 1934, 41, 411–419. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order α+iβ. Afr. Mat. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Jafari, M.; Motamednezad, A.; Adegani, E.A. Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya operator. Stud. Univ. Babes-Bolyai Math. 2022, 67, 739–747. [Google Scholar] [CrossRef]
- Adegani, E.A.; Cho, N.E.; Alimohammadi, D.; Motamednezhad, A.; Shahrood, I. Coefficient bounds for certain two Subclasses of bi-univalent functions. AIMS Math. 2021, 6, 9126–9137. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson Distribution Series for subclass of Analytic Functions and bi–univalent functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amourah, A.; Alnajar, O.; Darus, M.; Shdouh, A.; Ogilat, O. Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2023, 11, 1799. https://doi.org/10.3390/math11081799
Amourah A, Alnajar O, Darus M, Shdouh A, Ogilat O. Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics. 2023; 11(8):1799. https://doi.org/10.3390/math11081799
Chicago/Turabian StyleAmourah, Ala, Omar Alnajar, Maslina Darus, Ala Shdouh, and Osama Ogilat. 2023. "Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials" Mathematics 11, no. 8: 1799. https://doi.org/10.3390/math11081799
APA StyleAmourah, A., Alnajar, O., Darus, M., Shdouh, A., & Ogilat, O. (2023). Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics, 11(8), 1799. https://doi.org/10.3390/math11081799