Fixed Point Results via -Transitive Binary Relation and Fuzzy - -Contraction
Abstract
:1. Introduction
2. Preliminaries
- 1.
- for all ;
- 2.
- whenever and , for all .
- ;
- if and only if ;
- ;
- ;
- is continuous;
- 1.
- A sequence is called convergent to iff for all
- 2.
- A sequence is called a Cauchy sequence iff for each and , there exists such that for all
- 3.
- A complete is an in which every Cauchy sequence is convergent.
- ;
- for all ;
- if are sequences in such that then .
- ()
- is non-decreasing and continuous,
- ()
- if and only if , where is a sequence in .
- (
- and ;
- (
- for all q.
3. Main Results
- for all with ,
- for all with .
- (i)
- is -complete;
- (ii)
- (iii)
- is -closed and is -transitive;
- (iv)
- is a fuzzy --contraction with respect to some ;
- (v)
- Either is β-self-closed or is -continuous.
- (i)
- is -complete;
- (ii)
- (iii)
- is -closed and -transitive;
- (iv)
- There exists such that
- (v)
- Either is β-self-closed or is -continuous.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-H. Fixed Point Theorems for -Contractions in Generalized Metric Spaces. Abstr. Appl. Anal. 2018, 2018, 1327691. [Google Scholar] [CrossRef] [Green Version]
- Turinici, M. Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef] [Green Version]
- Ran, A.C.; Reurings, M.C. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, I.; Michalek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Gregori, V.; Sapena, A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- Mihet, D. Fuzzy ψ-contractive mappings in non-archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744. [Google Scholar] [CrossRef]
- Moussaoui, A.; Hussain, N.; Melliani, S.; Hayel, N.; Imdad, M. Fixed point results via extended 𝒵-simulation functions in fuzzy metric spaces. J. Inequal. Appl. 2022, 2022, 69. [Google Scholar] [CrossRef]
- Moussaoui, A.; Hussain, N.; Melliani, S. Global Optimal Solutions for Proximal Fuzzy Contractions Involving Control Functions. J. Math. 2021, 2021, 6269304. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Moussaoui, A.; Saleem, N.; Melliani, S.; Zhou, M. Fixed Point Results for New Types of Fuzzy Contractions via Admissible Functions and 𝒵-Simulation Functions. Axioms 2022, 11, 87. [Google Scholar] [CrossRef]
- Hayel, N.S.; Imdad, M.; Khan, I.A.; Hasanuzzaman, M.D. Fuzzy Θf-contractive mappings and their fixed points with applications. J. Intell. Fuzzy Syst. 2020, 39, 7097–7106. [Google Scholar]
- Rakić, D.; Mukheimer, A.; Došenović, T.; Mitrović, Z.D.; Radenović, S. On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 2020, 2020, 99. [Google Scholar] [CrossRef] [Green Version]
- Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. Axioms 2021, 10, 3. [Google Scholar] [CrossRef]
- Oner, T. Some topological properties of fuzzy strong b-metric spaces. J. Linear Topol. Algebra 2019, 8, 127–131. [Google Scholar]
- Schweizer, B.; Sklar. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef] [Green Version]
- Gregori, V.; Morillas, S.; Sapena, A. Examples of fuzzy metrics and applications. Fuzzy Sets Syst. 2011, 170, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Lipschutz, S. Schaum’s Outline of Theory and Problems of Set Theory and Related Topics; Tata McGraw-Hill Publishing: New York, NY, USA, 1976. [Google Scholar]
- Alfaqiha, W.M.; Ali, B.; Imdad, M.; Sessa, S. Fuzzy relation-theoretic contraction principle. J. Intell. Fuzzy Syst. 2021, 40, 4491–4501. [Google Scholar] [CrossRef]
- Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 3rd ed.; PHI Pvt. Ltd.: New Delhi, India, 2000. [Google Scholar]
- Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussaoui, A.; Todorčević, V.; Pantović, M.; Radenović, S.; Melliani, S.
Fixed Point Results via
Moussaoui A, Todorčević V, Pantović M, Radenović S, Melliani S.
Fixed Point Results via
Moussaoui, Abdelhamid, Vesna Todorčević, Mirjana Pantović, Stojan Radenović, and Said Melliani.
2023. "Fixed Point Results via
Moussaoui, A., Todorčević, V., Pantović, M., Radenović, S., & Melliani, S.
(2023). Fixed Point Results via