Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Statement
2.2. Physical Dynamics and PhyDnet
2.3. Attention Gates
3. PastNet Model for Spatiotemporal Prediction
4. Experiments
4.1. Datasets
4.2. Evaluation Metrics
4.3. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S.E.; Prabhat, M.; Pal, C. ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Adv. Neural Inf. Process. Syst. 2017, 30, 3403–3414. [Google Scholar]
- McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef]
- Fang, W.; Sha, Y.; Sheng, V.S. Survey on the Application of Artificial Intelligence in ENSO Forecasting. Mathematics 2022, 10, 3793. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Rasp, S.; Lerch, S. Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev. 2018, 146, 3885–3900. [Google Scholar] [CrossRef] [Green Version]
- Price, I.; Rasp, S. Increasing the Accuracy and Resolution of Precipitation Forecasts Using Deep Generative Models. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Virtual, 28–30 March 2022; pp. 10555–10571. [Google Scholar]
- Zhao, X.; Sun, Q.; Tang, W.; Yu, S.; Wang, B. A comprehensive wind speed forecast correction strategy with an artificial intelligence algorithm. Front. Environ. Sci. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Adewoyin, R.A.; Dueben, P.; Watson, P.; He, Y.; Dutta, R. TRU-NET: A deep learning approach to high resolution prediction of rainfall. Mach. Learn. 2021, 110, 2035–2062. [Google Scholar] [CrossRef]
- Rodrigues, E.R.; Oliveira, I.; Cunha, R.; Netto, M. DeepDownscale: A deep learning strategy for high-resolution weather forecast. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 Octomber–1 November 2018; pp. 415–422. [Google Scholar]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Gagne, D.J.; Haupt, S.E.; Nychka, D.W.; Thompson, G. Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Weather Rev. 2019, 147, 2827–2845. [Google Scholar] [CrossRef]
- Essa, Y.; Hunt, H.G.; Gijben, M.; Ajoodha, R. Deep Learning Prediction of Thunderstorm Severity Using Remote Sensing Weather Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4004–4013. [Google Scholar] [CrossRef]
- Oprea, S.; Martinez-Gonzalez, P.; Garcia-Garcia, A.; Castro-Vargas, J.A.; Orts-Escolano, S.; Garcia-Rodriguez, J.; Argyros, A. A review on deep learning techniques for video prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2806–2826. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Yu, P.S. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2022, 34, 3681–3700. [Google Scholar] [CrossRef]
- Luo, A.; Shangguan, B.; Yang, C.; Gao, F.; Fang, Z.; Yu, D. Spatial-Temporal Diffusion Convolutional Network: A Novel Framework for Taxi Demand Forecasting. ISPRS Int. J. Geo-Inf. 2022, 11, 193. [Google Scholar] [CrossRef]
- Shi, X.; Yeung, D.Y. Machine learning for spatiotemporal sequence forecasting: A survey. arXiv 2018, arXiv:1808.06865. [Google Scholar]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2208–2225. [Google Scholar] [CrossRef]
- Castro, R.; Souto, Y.M.; Ogasawara, E.; Porto, F.; Bezerra, E. STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for weather forecasting. Neurocomputing 2021, 426, 285–298. [Google Scholar] [CrossRef]
- Long, Z.; Lu, Y.; Ma, X.; Dong, B. PDE-Net: Learning PDEs from data. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 10–15 July 2018; Volume 7, pp. 5067–5078. [Google Scholar]
- Guen, V.L.; Thome, N. Disentangling physical dynamics from unknown factors for unsupervised video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11474–11484. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. In Proceedings of the Conference Proceedings—EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Mansimov, E.; Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Volume 1, pp. 843–852. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
Model | Skip Connection | Physical Dynamic Feature |
---|---|---|
PastNet-p+r | No | Keep |
PastNet-p+r-skip | Yes | Keep |
PastNet-r | No | Drop |
PastNet-r-skip | Yes | Drop |
Method | MSE | MAE | SSIM | Number of Parameters |
---|---|---|---|---|
ConvLSTM | 103.3 | 182.9 | 0.707 | 2,508,032 |
PhyDNet | 24.4 | 70.3 | 0.947 | 3,091,732 |
PastNet-p+r | 22.5 | 65.5 | 0.951 | 3,096,055 |
PastNet-p+r-skip | 21.8 | 64.3 | 0.953 | 3,096,055 |
PastNet-r | 22.3 | 65.4 | 0.952 | 3,021,943 |
PastNet-r-skip | 22.0 | 64.6 | 0.952 | 3,021,943 |
Method | MSE | MAE |
---|---|---|
PhyDNet | 25.8 | 4.5 |
PastNet-p+r | 17.6 | 3.4 |
PastNet-p+r-skip | 18.9 | 3.7 |
PastNet-r | 19.3 | 3.8 |
PastNet-r-skip | 19.0 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, Q.; Lin, X. Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting. Mathematics 2023, 11, 1330. https://doi.org/10.3390/math11061330
Zhao X, Sun Q, Lin X. Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting. Mathematics. 2023; 11(6):1330. https://doi.org/10.3390/math11061330
Chicago/Turabian StyleZhao, Xueliang, Qilong Sun, and Xiaoguang Lin. 2023. "Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting" Mathematics 11, no. 6: 1330. https://doi.org/10.3390/math11061330
APA StyleZhao, X., Sun, Q., & Lin, X. (2023). Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting. Mathematics, 11(6), 1330. https://doi.org/10.3390/math11061330