Notes on the Localization of Generalized Hexagonal Cellular Networks
Abstract
:1. Introduction
2. Certain Important Results
3. Construction
4. Conclusions and Comparison with the Existing Research Work
Author Contributions
Funding
Conflicts of Interest
References
- Nadeem, M.F.; Azeem, M.; Khalil, A. The locating number of hexagonal Möbius ladder network. J. Appl. Math. Comput. 2020, 66, 149–165. [Google Scholar] [CrossRef]
- Hauptmann, M.; Schmied, R.; Viehmann, C. Approximation complexity of metric dimension problem. J. Discret. Algorithms 2012, 14, 214–222. [Google Scholar] [CrossRef]
- Lewis, H.; Garey, M.; Johnson, D. Computers and intractability. A guide to the theory of NP-completeness. J. Symb. Log. 1983, 48, 498–500. [Google Scholar] [CrossRef]
- Johnson, M.A. Browsable Structure-Activity Datasets, Advances in Molecular Similarity; JAI Press: Greenwich, CT, USA, 1998; pp. 153–170. [Google Scholar]
- Johnson, M.A. Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 1993, 3, 203–236. [Google Scholar] [CrossRef] [PubMed]
- Slater, P. Leaves of trees. In Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Boca Raton, FL, USA, 17–20 February 1975; Volume 14, pp. 549–559. [Google Scholar]
- Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Comb. 1976, 2, 191–195. [Google Scholar]
- Chartrand, G.; Salehi, E.; Zhang, P. The partition dimension of graph. Aequationes Math. 2000, 59, 45–54. [Google Scholar] [CrossRef]
- Chartrand, G.; Eroh, L.; Johnson, M.A.O.; Ortrud, R. Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 2000, 105, 99–113. [Google Scholar] [CrossRef]
- Hernando, C.; Mora, M.; Slater, P.; Wood, D. Fault-tolerant metric dimension of graphs. Convexity Discret. Struct. 2008, 5, 81–85. [Google Scholar]
- Shang, Y. Local natural connectivity in complex networks. Chin. Phys. Lett. 2011, 28, 068903. [Google Scholar] [CrossRef]
- Shang, Y. Localized recovery of complex networks against failure. Sci. Rep. 2016, 6, 30521. [Google Scholar]
- Nadeem, M.F.; Hassan, M.; Azeem, M.; Khan, S.U.D.; Shaik, M.R.; Sharaf, M.A.F.; Abdelgawad, A.; Awwad, E.M. Application of Resolvability Technique to Investigate the Different Polyphenyl Structures for Polymer Industry. J. Chem. 2021, 2021, 6633227. [Google Scholar] [CrossRef]
- Ahmad, A.; Koam, A.N.; Siddiqui, M.; Azeem, M. Resolvability of the starphene structure and applications in electronics. Ain Shams Eng. J. 2021, 13, 101587. [Google Scholar] [CrossRef]
- Khuller, S.; Raghavachari, B.; Rosenfeld, A. Landmarks in graphs. Discret. Appl. Math. 1996, 70, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Sebö, A.; Tannier, E. On metric generators of graphs. Math. Oper. Res. 2004, 29, 383–393. [Google Scholar] [CrossRef]
- Ahmad, A.; Bača, M.; Sultan, S. Computing the metric dimension of Kayak Paddles graph and Cycles with chord. Proyecc. J. Math. 2020, 39, 287–300. [Google Scholar] [CrossRef]
- Imran, S.; Siddiqui, M.K.; Hussain, M. Computing the upper bounds for the metric dimension Of cellulose network. Appl. Math. E-Notes 2019, 19, 585–605. [Google Scholar]
- Koam, A.N.A.; Ahmad, A.; Abdelhag, M.E.; Azeem, M. Metric and Fault-Tolerant Metric Dimension of Hollow Coronoid. IEEE Access 2021, 9, 81527–81534. [Google Scholar] [CrossRef]
- Azeem, M.; Nadeem, M.F. Metric-based resolvability of polycyclic aromatic hydrocarbons. Eur. Phys. J. Plus 2021, 136, 395. [Google Scholar] [CrossRef]
- Ahmad, A.; Baca, M.; Sultan, S. On Metric Dimension and Minimal doubly resolving sets of Harary graph. Acta Math. Univ. Comen. 2020, 89, 123–129. [Google Scholar]
- Imran, M.; Siddiqui, M.K.; Naeem, R. On the Metric Dimension of Generalized Petersen Multigraphs. IEEE Access 2018, 6, 74328–74338. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Al-Mushayt, O.; Bokhary, S.A.H. On the metric dimension of barcycentric subdivision of Cayley graphs Cay(Zn⊕Zm). Miskolc Math. Notes 2015, 16, 637–646. [Google Scholar]
- Azeem, M.; Imran, M.; Nadeem, M.F. Sharp bounds on partition dimension of hexagonal Möbius ladder. J. King Saud Univ.-Sci. 2022, 34, 101779. [Google Scholar] [CrossRef]
- Bukhari, S.; Jamil, M.K.; Azeem, M.; Swaray, S. Patched Network and its Vertex-Edge Metric-Based Dimension. IEEE Access 2023, 11, 4478–4485. [Google Scholar] [CrossRef]
- Koam, A.N.A.; Ahmad, A. Barycentric subdivision of Cayley graphs with constant edge metric dimension. IEEE Access 2020, 8, 80624–80628. [Google Scholar] [CrossRef]
- Ahmad, Z.; Chaudhary, M.A.; Baig, A.Q.; Zahid, M.A. Fault-tolerant metric dimension of P(n, 2) graph. J. Discret. Math. Sci. Cryptogr. 2021, 24, 647–656. [Google Scholar] [CrossRef]
- Vietz, D.; Wanke, E. The Fault-Tolerant Metric Dimension of Cographs. In Fundamentals of Computation Theory; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 350–364. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Bhat, V.K. Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder. Discret. Math. Algorithms Appl. 2021, 14, 2150132. [Google Scholar] [CrossRef]
- Saha, L.; Lama, R.; Tiwary, K.; Das, K.; Shang, Y. Fault-tolerant metric dimension of circulant graphs. Mathematics 2022, 10, 124. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Ali, W.; Siddiqui, H.M.A. Locating Number of Biswapped Networks. Int. J. Found. Comput. Sci. 2022, 33, 667–690. [Google Scholar] [CrossRef]
- Deng, W.; Karaliopoulos, M.; Mühlbauer, W.; Zhu, P.; Lu, X.; Plattner, B. k-Fault tolerance of the Internet AS graph. Comput. Netw. 2011, 55, 2492–2503. [Google Scholar] [CrossRef]
- Imran, M.; Ahmad, A.; Azeem, M.; Elahi, K. Metric-Based Resolvability of Quartz Structure. Comput. Mater. Contin. 2021, 71, 2053–2071. [Google Scholar]
- Raza, H.; Hayat, S.; Pan, X.F. On the fault-tolerant metric dimension of certain interconnection networks. J. Appl. Math. Comput. 2019, 60, 517–535. [Google Scholar] [CrossRef]
- Raza, H.; Hayat, S.; Pan, X.F. On the fault-tolerant metric dimension of convex polytopes. Appl. Math. Comput. 2018, 339, 172–185. [Google Scholar] [CrossRef]
- Donald, V.H.M. Advanced Mobile Phone Service: The Cellular Concept. Bell Syst. Tech. J. 1979, 58, 15–41. [Google Scholar] [CrossRef]
- Yang, X.; Fapojuwo, A.O. Performance analysis of hexagonal cellular networks in fading channels. Wirel. Commun. Mob. Comput. 2015, 16, 850–867. [Google Scholar] [CrossRef]
- Garg, V. Wireless Communications and Networking; Elsevier Inc.: Boston, MA, USA, 2007; pp. 47–147. [Google Scholar]
- Jacks, E.; Schumacher, G. NGMN Alliance Performance Evaluation Methodology; NGMN Technical Working Group Steering Committee (TWG-SC): Frankfurt, Germany, 2007; pp. 1–36. [Google Scholar]
- 3GPP TR 36.814 V9.0.0. Further Advancements for E-UTRA Physical Layer Aspect. 2010. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=996975 (accessed on 3 January 2023).
- Saquib, N.; Hossain, E.; Le, L.B.; Kim, D.I. Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wirel. Commun. 2012, 19, 86–95. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, G.; Jafar, S.A. Topological Interference Management for Hexagonal Cellular Networks. IEEE Trans. Wirel. Commun. 2015, 14, 2368–2376. [Google Scholar] [CrossRef]
- Alqahtani, Y.; Jamil, M.K.; Alshehri, H.; Ahmad, A.; Azeem, M. Vertex metric resolvability of COVID antiviral drug structures. J. Intell. Fuzzy Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Melter, R.A.; Tomescu, I. Metric bases in digital geometry. Comput. Vis. Graph. Image Process. 1984, 25, 113–121. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Javaid, I.; Salman, M. Fault-Tolerant metric and partition dimension of graphs. Utliltas Math. 2010, 83, 187–199. [Google Scholar]
- Abd-El-Barr, M. Topological network design: A survey. J. Netw. Comput. 2009, 32, 501–509. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, L.; Li, X. A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization. Comput. Netw. 2019, 154, 73–78. [Google Scholar] [CrossRef]
- Aksu, H.; Aksoy, D.; Korpeoglu, I. A study of localization metrics: Evaluation of position errors in wireless sensor networks. Comput. Netw. 2011, 55, 3562–3577. [Google Scholar] [CrossRef]
- Ward, C.B.; Wiegand, N.M. Complexity results on labeled shortest path problems from wireless routing metrics. Comput. Netw. 2010, 54, 208–217. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.; Bie, R.; Song, H. Discovering time-dependent shortest path on traffic graph for drivers towards green driving. J. Netw. Comput. 2017, 83, 204–212. [Google Scholar] [CrossRef]
- Chou, C.P.; Li, Y.; Witek, H.A. Zhang–Zhang Polynomials of Various Classes of Benzenoid Systems. MATCH Commun. Math. Comput. Chem. 2012, 68, 31–64. [Google Scholar]
- Manuel, P.; Bharati, R.; Rajasingh, I.; M, C.M. On minimum metric dimension of honeycomb networks. J. Discret. Algorithms 2008, 6, 20–27. [Google Scholar] [CrossRef]
- Shreedhar, K.; Sooryanarayana, B.; Hegde, C.; Kumar, V. Metric dimension of a hexagonal cellular network. Int. J. Math. Sci. Eng. Appl. 2010, 4, 133–148. [Google Scholar]
- Huang, Q.; Khalil, A.; Ali, D.A.; Ahmad, A.; Luo, R.; Azeem, M. Breast cancer chemical structures and their partition resolvability. Math. Biosci. Eng. 2022, 20, 3838–3853. [Google Scholar] [CrossRef]
0 | 6 | 1 | 5 | ||
2 | 4 | 3 | 3 | ||
4 | 2 | 5 | 1 | ||
6 | 0 | 2 | 8 | ||
2 | 7 | 2 | 6 | ||
3 | 5 | 4 | 4 | ||
5 | 4 | 6 | 2 | ||
7 | 1 | 8 | 2 |
3 | 9 | 4 | 8 | ||
3 | 7 | 4 | 6 | ||
5 | 5 | 6 | 4 | ||
7 | 3 | 8 | 4 | ||
9 | 3 | 5 | 9 | ||
6 | 8 | 5 | 7 | ||
6 | 6 | 7 | 5 | ||
8 | 6 | 9 | 5 |
1 | 5 | 0 | 6 | ||
1 | 7 | 2 | 8 | ||
3 | 9 | 3 | 3 | ||
2 | 4 | 3 | 5 | ||
2 | 6 | 3 | 7 | ||
4 | 8 | 5 | 9 |
5 | 1 | 4 | 2 | ||
5 | 3 | 4 | 4 | ||
5 | 5 | 4 | 6 | ||
5 | 7 | 6 | 8 | ||
6 | 0 | 7 | 1 | ||
6 | 2 | 7 | 3 | ||
6 | 4 | 7 | 5 | ||
6 | 6 | 8 | 2 | ||
9 | 3 | 8 | 4 | ||
9 | 5 | 8 | 6 |
0 | 11 | 1 | 10 | ||
2 | 9 | 3 | 10 | ||
4 | 9 | 5 | 10 | ||
6 | 9 | 2 | 10 | ||
1 | 9 | 2 | 8 | ||
3 | 8 | 4 | 7 | ||
5 | 8 | 6 | 7 | ||
7 | 8 | 8 | 7 | ||
4 | 10 | 3 | 9 | ||
4 | 8 | 3 | 7 | ||
4 | 8 | 5 | 6 | ||
6 | 5 | 7 | 6 | ||
8 | 5 | 9 | 6 | ||
10 | 5 |
5 | 9 | 6 | 8 | ||
5 | 7 | 6 | 6 | ||
5 | 5 | 6 | 4 | ||
7 | 4 | 8 | 3 | ||
9 | 4 | 10 | 3 | ||
11 | 4 | 7 | 7 | ||
8 | 6 | 7 | 5 | ||
8 | 4 | 7 | 3 | ||
8 | 2 | 9 | 2 | ||
10 | 1 | 11 | 2 | ||
9 | 5 | 10 | 4 | ||
9 | 3 | 10 | 2 | ||
9 | 1 | 11 | 1 | ||
10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, M.; Jamil, M.K.; Shang, Y. Notes on the Localization of Generalized Hexagonal Cellular Networks. Mathematics 2023, 11, 844. https://doi.org/10.3390/math11040844
Azeem M, Jamil MK, Shang Y. Notes on the Localization of Generalized Hexagonal Cellular Networks. Mathematics. 2023; 11(4):844. https://doi.org/10.3390/math11040844
Chicago/Turabian StyleAzeem, Muhammad, Muhammad Kamran Jamil, and Yilun Shang. 2023. "Notes on the Localization of Generalized Hexagonal Cellular Networks" Mathematics 11, no. 4: 844. https://doi.org/10.3390/math11040844
APA StyleAzeem, M., Jamil, M. K., & Shang, Y. (2023). Notes on the Localization of Generalized Hexagonal Cellular Networks. Mathematics, 11(4), 844. https://doi.org/10.3390/math11040844