Riquier–Neumann Problem for the Polyharmonic Equation in a Ball
Abstract
:1. Introduction
2. Elementary Solution and Integral Representation
3. Green’s Function of the Riquier–Neumann Problem
4. Solution of the Riquier–Neumann Problem
5. Particular Case
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Begehr, H. Biharmonic Green functions. Matematiche 2006, 61, 395–405. [Google Scholar]
- Begehr, H.; Vaitekhovich, T. Modified harmonic Robin function. Complex Var. Elliptic Equ. 2013, 58, 483–496. [Google Scholar] [CrossRef]
- Sadybekov, M.A.; Torebek, B.T.; Turmetov, B.K. On an explicit form of Green function of the Robin problem for the Laplace operator in a circle. Adv. Pure Appl. Math. 2015, 6, 163–172. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L. Biharmonic Green function and biharmonic Neumann function in a sector. Complex Var. Elliptic Equ. 2013, 58, 7–22. [Google Scholar] [CrossRef]
- Wang, Y. Tri-harmonic boundary value problems in a sector. Complex Var. Elliptic Equ. 2014, 59, 732–749. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Sweers, G. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains; Springer: Berlin, Germany, 1991. [Google Scholar]
- Boggio, T. Sulle funzioni di Green d’ordinem. Palermo Rend. 1905, 20, 97–135. [Google Scholar] [CrossRef] [Green Version]
- Kalmenov, T.S.; Koshanov, B.D.; Nemchenko, M.Y. Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere. Complex Var. Elliptic Equ. 2008, 53, 177–183. [Google Scholar] [CrossRef]
- Karachik, V.V.; Turmetov, B.K. On Green’s Function for the Third Boundary Value Problem. Sib. Adv. Math. 2019, 29, 32–43. [Google Scholar] [CrossRef]
- Karachik, V.V. The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball. Math. Notes 2020, 107, 105–120. [Google Scholar] [CrossRef]
- Karachik, V.V.; Torebek, B.T. On the Dirichlet-Riquier problem for biharmonic equations. Math. Notes 2017, 102, 31–42. [Google Scholar] [CrossRef]
- Karachik, V.V. A Neumann-type problem for the biharmonic equation. Sib. Adv. Math. 2017, 27, 103–118. [Google Scholar] [CrossRef]
- Soldatov, A.P. On the Fredholm property and index of the generalized Neumann problem. Differ. Equ. 2020, 56, 212–220. [Google Scholar] [CrossRef]
- Karachik, V.V. Green’s Functions of the Navier and Riquier–Neumann Problems for the Biharmonic Equation in the Ball. Differ. Equ. 2021, 57, 654–668. [Google Scholar] [CrossRef]
- Sweers, G. A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 2009, 54, 79–93. [Google Scholar]
- Karachik, V.; Turmetov, B.; Yuan, H. Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball. Mathematics 2022, 10, 1158. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Green and Neumann Functions for a Plane Degenerate Circular Domain. Trends Math. 2019, 141–149. [Google Scholar]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Remark on Robin problem for Poisson equation. Complex Var. Elliptic Equ. 2017, 62, 1589–1599. [Google Scholar] [CrossRef]
- Akel, M.; Begehr, H. Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachrichten 2017, 290, 490–506. [Google Scholar] [CrossRef]
- Lin, H. Harmonic Green and Neumann functions for domains bounded by two intersecting circular arcs. Complex Var. Elliptic Equ. 2020, 67, 79–95. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Dauletkulova, A.; Lin, H. Harmonic Green functions for the Almaty apple. Complex Var. Elliptic Equ. 2020, 65, 1814–1825. [Google Scholar] [CrossRef]
- Dong, H.; Li, H. Optimal Estimates for the Conductivity Problem by Green’s Function Method. Arch. Ration. Mech. Anal. 2019, 231, 1427–1453. [Google Scholar] [CrossRef] [Green Version]
- Grebenkov, D.S.; Traytak, S.D. Semi-analytical computation of Laplacian Green functions in three-dimensional domains with disconnected spherical boundaries. J. Comput. Phys. 2019, 379, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-W.; Hwu, C. Green’s functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dokkum, J.S.; Nicola, L. Green’s function molecular dynamics including viscoelasticity. Model. Simul. Mater. Sci. Eng. 2019, 27, 075006. [Google Scholar] [CrossRef]
- Chung, F.; Zeng, J. Forest formulas of discrete Green’s functions. J. Graph Theory 2022, 102, 556–577. [Google Scholar] [CrossRef]
- Herrera, W.J.; Vinck-Posada, H.; Gómez Páez, S. Green’s functions in quantum mechanics courses. Am. J. Phys. 2022, 90, 763–769. [Google Scholar] [CrossRef]
- Härkönen, V.J. Exact factorization of the many-body Green’s function theory of electrons and nuclei. Phys. Rev. B 2022, 106, 205137. [Google Scholar] [CrossRef]
- Karachik, V.V. Riquier–Neumann Problem for the Polyharmonic Equation in a Ball. Differ. Equ. 2018, 54, 648–657. [Google Scholar] [CrossRef]
- Bitsadze, A.V. Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics), 5th ed.; Nauka: Moscow, Russia, 1982. [Google Scholar]
- Karachik, V.V. The Green Function of the Dirichlet Problem for the Biharmonic Equation in a Ball. Comput. Math. Math. Phys. 2019, 59, 66–81. [Google Scholar] [CrossRef]
- Karachik, V.V. Greens function of Dirichlet problem for biharmonic equation in the ball. Complex Var. Elliptic Equ. 2019, 64, 1500–1521. [Google Scholar] [CrossRef]
- Bitsadze, A.V. On the Neumann problem for harmonic functions. Dokl. Akad. Nauk SSSR 1990, 311, 11–13. [Google Scholar]
- Karachik, V.V. On the arithmetic triangle arising from the solvability conditions for the Neumann problem. Math. Notes 2014, 96, 217–227. [Google Scholar] [CrossRef]
- Karachik, V. Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball. Mathematics 2021, 9, 1907. [Google Scholar] [CrossRef]
- Sobolev, S.L. Cubature Formulas and Modern Analysis: An Introduction; Nauka: Moscow, Russia, 1974; Gordon and Breach: Montreux, Switzerland, 1992. [Google Scholar]
- Vladimirov, V.S. Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics), 2nd ed.; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Karachik, V.V. On some special polynomials. Proc. Am. Math. Soc. 2004, 132, 1049–1058. [Google Scholar] [CrossRef]
- Alimov, S.A. On a problem with an oblique derivative. Differ. Equ. 1981, 17, 1738–1751. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachik, V. Riquier–Neumann Problem for the Polyharmonic Equation in a Ball. Mathematics 2023, 11, 1000. https://doi.org/10.3390/math11041000
Karachik V. Riquier–Neumann Problem for the Polyharmonic Equation in a Ball. Mathematics. 2023; 11(4):1000. https://doi.org/10.3390/math11041000
Chicago/Turabian StyleKarachik, Valery. 2023. "Riquier–Neumann Problem for the Polyharmonic Equation in a Ball" Mathematics 11, no. 4: 1000. https://doi.org/10.3390/math11041000
APA StyleKarachik, V. (2023). Riquier–Neumann Problem for the Polyharmonic Equation in a Ball. Mathematics, 11(4), 1000. https://doi.org/10.3390/math11041000