Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms
Abstract
:1. Introduction
2. Preliminary and Assumptions
- (A.1) are continuous functions such that
- (A.2) The coefficients satisfy .
3. Technical Lemmas
4. Decay Estimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timoshenko, S.P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1921, 41, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Ammar-Khodja, F.; Benabdallah, A.; Rivera, J.M.; Racke, R. Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 2003, 194, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Guesmia, A.; Messaoudi, S.A. On the control of a viscoelastic damped Timoshenko-type system. Appl. Math. Comput. 2008, 206, 589–597. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Mustafa, M.I. A stability result in a memory-type Timoshenko system. Dyn. Syst. Appl. 2009, 18, 457. [Google Scholar] [CrossRef]
- Kim, J.U.; Renardy, Y. Boundary control of the Timoshenko beam. Control Optim. 1987, 25, 1417–1429. [Google Scholar] [CrossRef]
- Shi, D.H.; Feng, D.X. Exponential decay of Timoshenko beam with locally distributed feedback. IMA J. Math. Control Inf. 2001, 18, 395–403. [Google Scholar] [CrossRef]
- Muñoz Rivera, J.E.; Racke, R. Global stability for damped Timoshenko systems. Discret. Contin. Dyn. Syst. 2002, 9, 1625–1639. [Google Scholar] [CrossRef]
- Mustafa, M.; Messaoudi, S. General energy decay rates for a weakly damped Timoshenko system. J. Dyn. Control Syst. 2010, 16, 211–226. [Google Scholar] [CrossRef]
- Soufyane, A.; Whebe, A. Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron. J. Differ. Equ. 2003, 29, 1–14. [Google Scholar]
- Júnior, D.d.S.A.; Santos, M.; Rivera, J.M. Stability to 1D thermoelastic Timoshenko beam acting on shear force. Z. Für Angew. Math. Und Phys. 2014, 65, 1233–1249. [Google Scholar] [CrossRef]
- Apalara, T.A.; Messaoudi, S.A.; Keddi, A.A. On the decay rates of Timoshenko system with second sound. Math. Methods Appl. Sci. 2016, 39, 2671–2684. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Bchatnia, A.; Hamouda, M.; Messaoudi, S. General decay in a Timoshenko-type system with thermoelasticity with second sound. Adv. Nonlinear Anal. 2015, 4, 263–284. [Google Scholar] [CrossRef]
- Malacarne, A.; Rivera, J.E.M. Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type. Z. Für Angew. Math. Und Phys. 2016, 67, 1–10. [Google Scholar] [CrossRef]
- Feng, B. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discret. Contin. Dyn. Syst.-A 2017, 37, 4729–4751. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Yang, X.G. Long-time dynamics for a nonlinear Timoshenko system with delay. Appl. Anal. 2017, 96, 606–625. [Google Scholar] [CrossRef]
- Guesmia, A.; Soufyane, A. On the stability of Timoshenko-type systems with internal frictional dampings and discrete time delays. Appl. Anal. 2017, 96, 2075–2101. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Q. Stability of a Timoshenko system with local Kelvin–Voigt damping. Z. Für Angew. Math. Und Phys. 2017, 68, 1–15. [Google Scholar] [CrossRef]
- Mustafa, M.I. On the control of dissipative viscoelastic Timoshenko beams. Mediterr. J. Math. 2021, 18, 1–20. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Guesmia, A.; Messaoudi, S.A. New decay results for a viscoelastic-type Timoshenko system with infinite memory. Z. Für Angew. Math. Und Phys. 2021, 72, 1–24. [Google Scholar] [CrossRef]
- Guesmia, A.; Messaoudi, S.A. General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Methods Appl. Sci. 2009, 32, 2102–2122. [Google Scholar] [CrossRef]
- Acerbi, E.; Mingione, G. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 2002, 164, 213–259. [Google Scholar] [CrossRef]
- Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin, Germany, 2000; Volume 1748. [Google Scholar]
- Antontsev, S. Wave equation with p(x, t)-Laplacian and damping term: Existence and blow-up. Differ. Equ. Appl 2011, 3, 503–525. [Google Scholar] [CrossRef] [Green Version]
- Antontsev, S. Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions. Comptes Rendus Mécanique 2011, 339, 751–755. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Talahmeh, A.A. A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities. Appl. Anal. 2017, 96, 1509–1515. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Talahmeh, A.A.; Al-Smail, J.H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74, 3024–3041. [Google Scholar] [CrossRef]
- Sun, L.; Ren, Y.; Gao, W. Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources. Comput. Math. Appl. 2016, 71, 267–277. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Al-Gharabli, M.M.; Al-Mahdi, A.M. On the decay of solutions of a viscoelastic wave equation with variable sources. Math. Methods Appl. Sci. 2020, 45, 8389–8411. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Zahri, M. Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity. Math. Control Relat. Fields 2022, 13, 605–630. [Google Scholar] [CrossRef]
- Messaoudi, S.A. On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities. Math. Methods Appl. Sci. 2020, 43, 5114–5126. [Google Scholar] [CrossRef]
- Li, X.; Guo, B.; Liao, M. Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources. Comput. Math. Appl. 2020, 79, 1012–1022. [Google Scholar] [CrossRef]
- Al-Gharabli, M.M.; Al-Mahdi, A.M.; Kafini, M. Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities. AIMS Math. 2021, 6, 10105–10129. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, W. Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents. Bound. Value Probl. 2013, 2013, 208. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Kang, J.R. Blow-up of solutions for a viscoelastic wave equation with variable exponents. Math. Methods Appl. Sci. 2019, 42, 2083–2097. [Google Scholar] [CrossRef]
- Hassan, J.H.; Messaoudi, S.A. General decay results for a viscoelastic wave equation with a variable exponent nonlinearity. Asymptot. Anal. 2021, 125, 365–388. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Messaoudi, S.A.; Zahri, M. Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping. Arab. J. Math. 2021, 10, 443–458. [Google Scholar] [CrossRef]
- Mustafa, M.I. Viscoelastic Timoshenko beams with variable-exponent nonlinearity. J. Math. Anal. Appl. 2022, 516, 1–24. [Google Scholar] [CrossRef]
- Antontsev, S.; Shmarev, S. Evolution PDEs with nonstandard growth conditions. Atlantis Stud. Differ. Equ. 2015, 4, 1–407. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Radulescu, V.D.; Repovs, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; CRC Monographs and Research Notes in Mathematics; Chapman & Hall: London, UK, 2015; Volume 9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mahdi, A.M.; Al-Gharabli, M.M. Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms. Mathematics 2023, 11, 538. https://doi.org/10.3390/math11030538
Al-Mahdi AM, Al-Gharabli MM. Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms. Mathematics. 2023; 11(3):538. https://doi.org/10.3390/math11030538
Chicago/Turabian StyleAl-Mahdi, Adel M., and Mohammad M. Al-Gharabli. 2023. "Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms" Mathematics 11, no. 3: 538. https://doi.org/10.3390/math11030538
APA StyleAl-Mahdi, A. M., & Al-Gharabli, M. M. (2023). Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms. Mathematics, 11(3), 538. https://doi.org/10.3390/math11030538