Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data
Abstract
:1. Introduction
2. Proposed Estimator (KL1)
Coordinate Descent for KL1
3. Simulation Studies
Algorithm 1 Pseudo-code for the coordinate descent algorithm |
Input: maximum iteration (max_iter), tolerance (tol),hyperparameters (), predictors (matrix X), response (vector Y) Initialize: While iter < max_iter do: While do: End While If : Break Else: End While Output: |
4. Real-Life Application
4.1. Dataset I (Prostate Cancer Data)
4.2. Dataset 2 (Asphalt Binder Data)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Fu, W.J. Penalized Regressions: The Bridge versus the Lasso. J. Comput. Graph. Stat. 1998, 7, 397–416. [Google Scholar]
- Dawoud, I.; Abonazel, M.R.; Awwad, F.A.; Tag Eldin, E. A New Tobit Ridge-Type Estimator of the Censored Regression Model with Multicollinearity Problem. Front. Appl. Math. Stat. 2022, 8, 952142. [Google Scholar] [CrossRef]
- Ugwuowo, F.I.; Oranye, H.E.; Arum, K.C. On the jackknife Kibria-Lukman estimator for the linear regression model. Commun. Stat. Simul. Comput. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Idowu, J.I.; Oladapo, O.J.; Owolabi, A.T.; Ayinde, K.; Akinmoju, O. Combating multicollinearity: A new two-parameter approach. Nicel Bilim. Derg. 2023, 5, 90–116. [Google Scholar] [CrossRef]
- Lukman, A.F.; Ayinde, K.; Binuomote, S.; Clement, O.A. Modified Ridge-Type Estimator to Combat Multicollinearity: Application to Chemical Data. J. Chemom. 2019, 33, e3125. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Arashi, M.; Asar, Y.; Yüzbaşı, B. SLASSO: A scaled LASSO for multicollinear situations. J. Stat. Comput. Simul. 2021, 91, 3170–3183. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Liu, K. A new class of biased estimate in linear regression. Commun. Stat. 1993, 22, 393–402. [Google Scholar]
- Liu, K. Using Liu-type estimator to combat collinearity. Commun. Stat. Theory Methods 2003, 32, 1009–1020. [Google Scholar] [CrossRef]
- Şiray, G.Ü.; Toker, S.; Özbay, N. Defining a two-parameter estimator: A mathematical programming evidence. J. Stat. Comput. Simul. 2021, 91, 2133–2152. [Google Scholar] [CrossRef]
- Dawoud, İ.; Abonazel, M.R.; Awwad, F.A. Modified Liu estimator to address the multicollinearity problem in regression models: A new biased estimation class. Sci. Afr. 2022, 17, e01372. [Google Scholar] [CrossRef]
- Kibria, B.M.G.; Lukman, A.F. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications. Scientifica 2020, 2020, 9758378. [Google Scholar] [CrossRef] [PubMed]
- Aladeitan, B.B.; Adebimpe, O.; Lukman, A.F.; Oludoun, O.; Abiodun, O. Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: Application and simulation. F1000Research 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Dawoud, I.; Kibria, B.M.G. A new biased estimator to combat the multicollinearity of the gaussian linear regression model. Stat. J. 2020, 3, 526–541. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Jiang, G. Robust regression shrinkage and consistent variable selection through the LAD-lasso. J. Bus. Econ. Stat. 2007, 25, 347–355. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Höfling, H.; Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Stat. 2007, 1, 302–332. [Google Scholar] [CrossRef]
- Breheny, P.; Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Stat. 2011, 5, 232. [Google Scholar] [CrossRef]
- Genç, M. A new double-regularized regression using Liu and lasso Regularization. Comput. Stat. 2021, 37, 159–227. [Google Scholar] [CrossRef]
- Ozkale, M.R.; Kaciranlar, S. The restricted and unrestricted two-parameter estimators. Commun. Stat. Theory Methods 2007, 36, 2707–2725. [Google Scholar] [CrossRef]
- Genc, M.; Ozkale, M.R. Usage of the GO estimator in high dimensional linear models. Comput. Stat. 2021, 36, 217–239. [Google Scholar] [CrossRef]
- Knight, K.; Fu, W. Asymptotics for lasso-type estimators. Ann. Stat. 2000, 28, 1356–1378. [Google Scholar]
Feature | Mean | SD | Kurtosis | Skewness |
---|---|---|---|---|
y | 2.478387 | 1.154329 | 0.588369 | −0.00043 |
lcavol | 1.35001 | 1.178625 | −0.51681 | −0.2503 |
lweight | 3.652686 | 0.496631 | 5.528852 | 1.216012 |
age | 63.86598 | 7.445117 | 1.162491 | −0.82848 |
lbph | 0.100356 | 1.450807 | −1.75144 | 0.133813 |
svi | 0.216495 | 0.413995 | −0.04574 | 1.398441 |
lcp | −0.17937 | 1.39825 | −0.95909 | 0.728634 |
gleason | 6.752577 | 0.722134 | 2.670319 | 1.26048 |
pgg45 | 24.38144 | 28.20403 | −0.26962 | 0.968105 |
Coef. | LASSO | Liu-LASSO | Goest | E-Net | KL1 | Ridge |
---|---|---|---|---|---|---|
lcavol | 0.0139 | 0.0139 | 0.0156 | 0.0141 | 0.0139 | 0.0157 |
lweight | 0.9721 | 0.9685 | 0.9737 | 0.9687 | 0.9641 | 0.9699 |
age | −0.0024 | −0.0011 | −0.0049 | −0.0012 | 0.0000 | −0.0037 |
lbph | 0.0006 | 0.0006 | 0.0007 | 0.0006 | 0.0006 | 0.0007 |
svi | 0.0000 | 0.0000 | −0.0015 | 0.0000 | 0.0000 | −0.0021 |
lcp | 0.0000 | 0.0000 | −0.0021 | 0.0000 | 0.0000 | −0.0036 |
gleason | 0.0046 | 0.0066 | 0.0096 | 0.0071 | 0.0091 | 0.0127 |
pgg45 | −0.0035 | −0.0035 | −0.0036 | −0.0034 | −0.0034 | −0.0035 |
TMSE | 2.6167 | 2.6109 | 2.6329 | 2.6125 | 2.6038 | 2.6284 |
Feature | Mean | SD | Kurtosis | Skewness |
---|---|---|---|---|
y | 18.4213 | 4.104044 | −0.11539 | 1.157349 |
x1 | 8.817391 | 2.863509 | 0.354511 | −0.56121 |
x2 | 34.62174 | 5.639951 | −0.58327 | 0.298716 |
x3 | 40.40435 | 7.272831 | 0.424932 | 0.025278 |
x4 | 14.67391 | 5.876549 | −0.59483 | −0.44598 |
x5 | 2.766087 | 1.417686 | −1.54606 | 0.032829 |
x6 | 84.48261 | 1.745293 | −1.21593 | −0.1494 |
x7 | 10.36478 | 0.332181 | 0.463533 | 0.679561 |
x8 | 0.966522 | 0.297911 | 4.368568 | 1.163691 |
x9 | 0.699565 | 0.252991 | −0.24003 | 0.514575 |
x10 | 4.371739 | 2.15229 | −1.17692 | −0.07012 |
x11 | 71.34783 | 41.79562 | −1.14499 | 0.434363 |
x12 | 243.1739 | 354.6355 | 8.152615 | 2.915543 |
Coef. | LASSO | Liu-LASSO | Goest | E-Net | KL1 | Ridge |
---|---|---|---|---|---|---|
saturates | 0.0010 | 0.0010 | 0.0012 | 0.0010 | 0.0010 | 0.0012 |
aromatics | 0.9323 | 0.9317 | 0.9326 | 0.9317 | 0.9310 | 0.9320 |
resins | −0.0524 | −0.0523 | −0.0526 | −0.0523 | −0.0521 | −0.0525 |
asphaltenes | −0.0600 | −0.0600 | −0.0600 | −0.0600 | −0.0600 | −0.0600 |
wax | −0.0337 | −0.0337 | −0.0338 | −0.0337 | −0.0336 | −0.0338 |
carbon | −0.0070 | −0.0070 | −0.0109 | −0.0066 | −0.0071 | −0.0113 |
hydrogen | 0.0621 | 0.0621 | 0.0623 | 0.0621 | 0.0621 | 0.0623 |
oxygen | 0.0134 | 0.0133 | 0.0138 | 0.0134 | 0.0133 | 0.0138 |
nitrogen | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0041 |
sulfur | 0.0000 | 0.0000 | 0.0098 | 0.0000 | 0.0000 | 0.0123 |
nickel | −0.0027 | −0.0027 | −0.0070 | −0.0025 | −0.0026 | −0.0084 |
vanadium | −0.0004 | −0.0004 | −0.0003 | −0.0004 | −0.0004 | −0.0003 |
TMSE | 9.1905 | 9.1849 | 9.2127 | 9.1862 | 9.1781 | 9.2165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukman, A.F.; Allohibi, J.; Jegede, S.L.; Adewuyi, E.T.; Oke, S.; Alharbi, A.A. Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics 2023, 11, 4795. https://doi.org/10.3390/math11234795
Lukman AF, Allohibi J, Jegede SL, Adewuyi ET, Oke S, Alharbi AA. Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics. 2023; 11(23):4795. https://doi.org/10.3390/math11234795
Chicago/Turabian StyleLukman, Adewale Folaranmi, Jeza Allohibi, Segun Light Jegede, Emmanuel Taiwo Adewuyi, Segun Oke, and Abdulmajeed Atiah Alharbi. 2023. "Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data" Mathematics 11, no. 23: 4795. https://doi.org/10.3390/math11234795
APA StyleLukman, A. F., Allohibi, J., Jegede, S. L., Adewuyi, E. T., Oke, S., & Alharbi, A. A. (2023). Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics, 11(23), 4795. https://doi.org/10.3390/math11234795