Torsion Elements and Torsionable Hypermodules
Abstract
:1. Introduction
2. Preliminaries
- 1.
- is a canonical hypergroup, i.e.,
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- 2.
- is a semigroup with a bilaterally absorbing element 0, i.e.,
- (a)
- (b)
- (c)
- 3.
- The product distributes from both sides over the hyperaddition, i.e.,
- (a)
- 1.
- 2.
- 3.
- 4.
- 5.
- (i)
- (ii)
- (
- (i′)
- (i)
- a surjective normal R-homomorphism if .
- (ii)
- an injective normal R-homomorphism if for all , implies .
- (iii)
- normal R-isomorphism if it is a bijective normal R-homomorphism.
- (1)
- N is a normal injective R-hypermodule.
- (2)
- For any hyperideal I of R, an inclusion hyperring homomorphism and a normal R-homomorphism , there exists a normal R-homomorphism such that the diagram in Figure 1 has the composition structure, i.e., .
- (i)
- For any exact chain
- (ii)
- For any R-hypermodules and normal R-homomorphisms and such that the chain is exact, there exists a normal R-homomorphism such that .
- (iii)
- For any hyperideal I of R, any inclusion hyperring homomorphism , and normal R-homomorphism , there exists a normal R-homomorphism such that .
3. Torsion Elements of an -Hypermodule
+ | 0 | 1 | 2 |
0 | {0} | {1} | {2} |
1 | {1} | R | {1} |
2 | {2} | {1} | {0,2} |
· | 0 | 1 | 2 |
0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 |
2 | 0 | 2 | 0 |
⊎ | A | 1+A | 2+A |
A | A | 1+A | 2+A |
1+A | 1+A | 1+A | 1+A |
2+A | 2+A | 1+A | {A, 2+A } |
4. Conclusions and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Ameri, R.; Shojaei, H. Projective and Injective Krasner Hypermodules. J. Algebra Appl. 2021, 20, 2150186. [Google Scholar] [CrossRef]
- Bordbar, H.; Jancic, S.; Cristea, I. Regular local hyperrings and hyperdomains. Aims Math. 2022, 7, 20767–20780. [Google Scholar] [CrossRef]
- Bordbar, H.; Cristea, I. About normal projectivity and injectivity of Krasner hypermodules. Axioms 2021, 10, 83. [Google Scholar] [CrossRef]
- Krasner, M. Approximation des Corps Values Complets de Caracteristique p, p > 0, par Ceux de Caracteristique Zero, Colloque d Algebre Superieure (1956); CBRM: Bruxelles, Belgium, 1957. [Google Scholar]
- Rota, R. Sugli iperanelli moltiplicativi. Rend. Mat. 1982, 2, 711–724. [Google Scholar]
- Vougiouklis, T. The fundamental relation in hyperrings. The general hyperfield. In Algebraic Hyperstructures, and Applications (Xanthi, 1990); World Scientific Publishing: Teaneck, NJ, USA, 1991; pp. 203–211. [Google Scholar]
- Bordbar, H.; Novak, M.; Cristea, I. A note on the support of a hypermodule. J. Algebra Appl. 2020, 19, 2050019. [Google Scholar] [CrossRef]
- Madanshekaf, A. Exact category of hypermodules. Int. J. Math. Math. Sci. 2006, 8, 31368. [Google Scholar] [CrossRef]
- Massouros, C.G. Free and cyclic hypermodules. Ann. Mat. Pura Appl. 1988, 4, 153–166. [Google Scholar] [CrossRef]
- Massouros, G.; Massouros, C.G. Hypercompositional Algebra, Computer Science and Geometry. Mathematics 2020, 8, 1338. [Google Scholar] [CrossRef]
- Shojaei, H.; Ameri, R. Some results on categories of Krasner hypermodules. J. Fundam. Appl. Sci. 2016, 8, 2298–2306. [Google Scholar]
- Shojaei, H.; Ameri, R.; Hoskova-Mayerova, S. On properties of various morphisms in the categories of general Krasner hypermodules. Ital. J. Pure Appl. Math. 2017, 39, 475–484. [Google Scholar]
- Shojaei, H.; Fasino, D. Isomorphism Theorems in the Primary Categories of Krasner Hypermodules. Symmetry 2019, 11, 687. [Google Scholar] [CrossRef]
- Shojaei, H.; Ameri, R. Various kinds of freeness in the categories of Krasner hypermodules. Int. J. Anal. Appl. 2018, 16, 793–808. [Google Scholar]
- Banaschewski, B.; Bruns, G. Categorical characterization of the MacNeille Completion. Arch. Math. 1967, 18, 369–377. [Google Scholar] [CrossRef]
- Halmos, P.R. Lectures on Boolean Algebras; Van Nostrand: Singapore, 1963. [Google Scholar]
- Bordbar, H.; Cristea, I. Divisible hypermodules. An. St. Univ. Ovidius Constanta 2022, 30, 57–74. [Google Scholar] [CrossRef]
- Sharp, R.Y. Steps in Commutative Algebra; London Mathematical Society Student Texts 19; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Türkmen, E.; Türkmen, B.N.; Bordbar, H. A Hyperstructural Approach to Semisimplicity. under review.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordbar, H. Torsion Elements and Torsionable Hypermodules. Mathematics 2023, 11, 4525. https://doi.org/10.3390/math11214525
Bordbar H. Torsion Elements and Torsionable Hypermodules. Mathematics. 2023; 11(21):4525. https://doi.org/10.3390/math11214525
Chicago/Turabian StyleBordbar, Hashem. 2023. "Torsion Elements and Torsionable Hypermodules" Mathematics 11, no. 21: 4525. https://doi.org/10.3390/math11214525
APA StyleBordbar, H. (2023). Torsion Elements and Torsionable Hypermodules. Mathematics, 11(21), 4525. https://doi.org/10.3390/math11214525