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1. Introduction

In this article, we have aimed to see how the result of normal injective hypermodules
may be used in the context of hypercompositional algebra by means of special elements
called torsion and torsionable elements. The possibility of the use of normal injective and
projective hypermodules in this way was opened up by the fundamental works of [1–3]. It
is extremely tempting these days to do everything in an Abelian category instead of the
category of hypermodules, and indeed, most of the results done in this article fit in the
Abelian category. We have tried to use categorical methods where we could.

Our subject is torsion elements and torsionable hypermodule and their relationships with
divisible and injective hypermodules. Therefore, we must assume the reader to be familiar
already with the notion of a hypermodule. Krasner in [4] introduced the notion of hyperring
and hypermodule over a hyperring, which is known as Krasner hyperrings and Krasner
hypermodules in 1956. Unless we state explicitly, we shall assume that our hypermodules
are Krasner hypermodules. There are also other types of hyperrings and hypermodules,
such as multiplicative hyperrings defined by Rota [5] or generalized hyperrings defined
by Vougiouklis [6]. For more details about the Krasner hypermodule and its properties in
connection with the categorical approach, please refer to [7–14].

This article goes in the same direction and provides some results of normal injective
hypermodules with category aspects. Injectivity has a significant role in the category theory.
In [15], the injective objects in the category of posets are Dedekind–MacNeille completions.
The injective object in the category of Boolean algebras is complete Boolean algebra [16].

Inspired by the characterization of injective modules in category theory, in this article,
we aim to obtain some new results in hypercompositional algebra. Zero-divisor elements
have an important role in a commutative unitary ring in classical algebra, where we have
two binary operations for a ring. If we consider hyperrings as an extension of a ring, where
the classical operations are substituted by hyperoperations, then zero divisors are still
important elements in studying the properties of hyperrings, especially Krasner hyperrings
(see [17]). Moreover, if we consider an R-hypermodule M, where R is a Krasner hyperring,
then we can extend the definition of a zero-divisor element of R to zero-divisor element of
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R over M as an element r of R if there exists a nonzero element m ∈ M such that r ·m = 0M.
By notation ZR(M), we denote the set of all zero-divisor elements of R over M. Using the
definition of zero-divisor element of R over R-hypermodule M, the definition of divisible
R-hypermodule was introduced in [17]. There is a difference between the definition of
a divisible element of a hypermodule in hypercompositional algebra and the divisible
element of a module in classical algebra. In the definition of a divisible element of an
R-hypermodule M, the concept of a nonzero divisor of R over the hypermodule M is
used, while in the definition of classical algebra for a divisible element, the definition of
nonzero divisor of a ring is used. Therefore, our definition of a divisible element of a
hypermodule is more general than the classical definition. The same motivation for the
torsion element in an R-hypermodule holds for us in this article. In homological algebra,
an element m of a R-module M is said to be a torsion element of M if there exists a nonzero
element r of R such that rm = 0, where R is an integral domain [18]. We will use the
same idea to define a torsion element and torsionable hypermodule, but since the structure
of a hypermodule is different from a module, the definitions of a torsion element will
be different, and torsionable hypermodule will be introduced. We will illustrate these
differences by investigating the relationships of TorR(M), i.e., the set of all torsion elements
of the R-hypermodule M, with ZR(M). Some fundamental properties of TorR(M) will be
presented. Furthermore, using TorR(M), the definition of a torsionable element will be
given. This definition will help us to state and prove one of the main results of this paper. In
particular, we show that every torsionable R-hypermodule M is a normal injective, where
R is a commutative hyperring. Moreover, if R is a commutative hyperring, then every
torsionable R-hypermodule is divisible, too.

2. Preliminaries

Throughout this paper, unless we state explicitly, R denotes a Krasner hyperring that
we will call, for short, hyperring.

Definition 1 ([4]). A hypercompositional structure (R,+, ·) is called a hyperring when

1. (R,+) is a canonical hypergroup, i.e.,

(a) a, b ∈ R⇒ a + b ⊆ R,
(b) ∀a, b, c ∈ R, a + (b + c) = (a + b) + c,
(c) ∀a, b ∈ R, a + b = b + a,
(d) ∃0 ∈ R, ∀a ∈ R, a + 0 = {a},
(e) ∀a ∈ R, ∃ − a ∈ R such that 0 ∈ a + x ⇔ x = −a,
(f) ∀a, b, c ∈ R, c ∈ a + b⇒ a ∈ c + (−b).

2. (R, ·) is a semigroup with a bilaterally absorbing element 0, i.e.,

(a) a, b ∈ R⇒ a · b ∈ R,
(b) ∀a, b, c ∈ R, a · (b · c) = (a · b) · c,
(c) ∀a ∈ R, 0 · a = a · 0 = 0.

3. The product distributes from both sides over the hyperaddition, i.e.,

(a) ∀a, b, c ∈ R, a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a.

Definition 2. A hyperring R is called commutative, if (R, ·) is commutative, i.e., for each a, b ∈ R,

a · b = b · a.

Moreover, if (R, ·) is a monoid, then we say that R is a hyperring with a unit element, or a
unitary hyperring.

The concept of hypermodule over a hyperring R was introduced by Krasner and
studied later in detail for its algebraic properties in [2,7,9].
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Definition 3. Let R be a unitary hyperring with the unit element 1R. A canonical hypergroup
(M,+) together with a left external map R×M −→ M defined by

(a, m) 7→ a ·m ∈ M (1)

such that for all a, b ∈ R and m1, m2 ∈ M we have

1. (a + b) ·m1 = a ·m1 + b ·m1,
2. a · (m1 + m2) = a ·m1 + a ·m2,
3. (ab) ·m1 = a · (b ·m1),
4. a · 0M = 0R ·m1 = 0M,
5. 1R ·m1 = m1

is called a left Krasner hypermodule over R, or in short, a left R-hypermodule. Similarly, one may
define a right R-hypermodule. Obviously, when R is a commutative hyperring, then the left and the
right R-hypermodule coincide.

The next proposition shows that every hyperring can be a hypermodule over itself.

Proposition 1 ([7]). Let R be a unitary hyperring. Then R is an R-hypermodule.

Definition 4. Let R be a hyperring, M be an R-hypermodule, and (N,+) be a subhypergroup of
(M,+), which is also closed under multiplication by elements of R. Then, N is a subhypermodule
of M.

Different types of homomorphism between R-hypermodules are explained in [3,17].
In what follows, we review some definitions of homomorphisms.

Definition 5. Let M and N be two R-hypermodules. A multivalued function f : M −→ P∗(N)
is called an R-homomorphism if:

(i) ∀m1, m2 ∈ M, f (m1 +M m2) ⊆ f (m1) +N f (m2),
(ii) (∀m ∈ M)(∀r ∈ R), f (r ·M m) = r ·N f (m),

while f is called strong homomorphism if instead of (i) we have

(i′) ∀m1, m2 ∈ M, f (m1 +M m2) = f (m1) +N f (m2).

A single-valued function f : M −→ N is called a strict R-homomorphism if axioms (i) and
(ii) are valid and it is called a normal R-homomorphism if (i′) and (ii) are valid.

The family of all normal R-homomorphisms from M to N is denoted by Homn
R(M, N).

In the following, we will recall some types of R-homomorphisms.

Definition 6 ([3]). Let f ∈ Homn
R(M, N). Then f is called

(i) a surjective normal R-homomorphism if Im( f ) = N.
(ii) an injective normal R-homomorphism if for all m1, m2 ∈ M, f (m1) = f (m2) implies

m1 = m2.
(iii) normal R-isomorphism if it is a bijective normal R-homomorphism.

In [3], the characterizations of a normal injective R-hypermodule were studied using
hyperideals, exact chains of R-hypermodules, and normal R-homomorphisms. We recall
these characterizations.

Theorem 1. Let R be a hyperring and N be an R-hypermodule. Then the following statements
are equivalent:
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(1) N is a normal injective R-hypermodule.
(2) For any hyperideal I of R, an inclusion hyperring homomorphism i : I −→ R and a normal

R-homomorphism k : I −→ N, there exists a normal R-homomorphism h : R −→ N such
that the diagram in Figure 1 has the composition structure, i.e., hi = k.

0 I R

N

k

i

∃h

Figure 1. Composition structure of a diagram for a normal injective R-hypermodule, using hyperideals.

Theorem 2. An R-hypermodule N is normal injective if it satisfies the following equivalent
conditions.

(i) For any exact chain

0 −→ M1
γ−→ M2

δ−→ M3 −→ 0 (2)

of R-hypermodules and normal R-homomorphisms, the chain

0 −→ Homn
R(M3, N)

∆−→ Homn
R(M2, N)

Γ−→ Homn
R(M1, N) −→ 0 (3)

is exact, too.
(ii) For any R-hypermodules M1, M2, N and normal R-homomorphisms γ : M1 −→ M2 and

k : M1 −→ N such that the chain 0 −→ M1
γ−→ M2 is exact, there exists a normal

R-homomorphism h : M2 −→ N such that hγ = k.
(iii) For any hyperideal I of R, any inclusion hyperring homomorphism i : I −→ R, and normal

R-homomorphism k : I −→ N, there exists a normal R-homomorphism h : R −→ N such
that hi = k.

A zero-divisor element in a hyperring R was described in the following definition. For
more detail regarding these elements, refer to [17].

Definition 7. Let R be a hyperring. An element r of R is said to be a right zero divisor if there
exists a nonzero element r′ ∈ R such that r′r = 0. Similarly, a left zero-divisor element is defined as
an element of R such that rr′ = 0 for an element r′ ∈ R \ {0}. If R is a commutative hyperring,
then the right and the left zero divisors coincide, and we refer to them as zero divisors of R. We
denote by Z(R) the set of all zero divisors of the hyperring R, i.e.,

Z(R) = {r ∈ R | ∃r′ ∈ R, r′ 6= 0, rr′ = 0} (4)

3. Torsion Elements of an R-Hypermodule M

In this article, for simplicity, we consider left R-hypermodules, which we call R-
hypermodules. Moreover, in the following lemma, the sum of the family of subhypermod-
ules is constructed.

Lemma 1. Let R be a hyperring, M be an R-hypermodule and {Mi}i∈I be a family of subhyper-
modules of M. Then the sum of this family is denoted by ∑i∈I Mi, and it is the union of the sets
∑i∈I mi, where for every i ∈ I, mi ∈ Mi. More specifically,

∑
i∈I

Mi =
⋃

mi∈Mi

(
∑
i∈I

mi
)
. (5)

Therefore, for subhypermodules M1 and M2, we have:

M1 + M2 =
⋃

m1∈M1,m2∈M2

(
m1 + m2

)
= {m ∈ M | ∃m1 ∈ M1, ∃m2 ∈ M2suchthatm ∈ m1 + m2} (6)
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where m1 + m2 is a set (in particular a subset of M) and not only an element, while

M1 + M2 + M3 =
⋃

m∈m1+m2,m3∈M3

(
m + m3

)
,

where m1 ∈ M1 and m2 ∈ M2 are arbitrary elements.
The structure ∑i∈I Mi is a subhypermodule of M and the smallest subhypermodule of M

containing every Mi.

Definition 8. Let R be a hyperring and M be an R-hypermodule. An element r ∈ R is said to be a
zero divisor over M if there exists a nonzero element m ∈ M such that r ·m = 0M. By notation
ZR(M), we denote the set of all zero-divisor elements over M, i.e.,

ZR(M) = {r ∈ R | ∃m ∈ M, m 6= 0, r ·M m = 0M}. (7)

For a nonzero R-hypermodule M, ZR(M) 6= ∅ since 0R ∈ ZR(M).

Definition 9. Let M be an R-hypermodule. A nonzero element m of M is said to be divisible if
for every nonzero divisor r ∈ R over M (r /∈ ZR(M)), there exists m′ ∈ M such that m = r ·m′.
Moreover, if each element of M is a divisible element, then M is said to be a divisible R-hypermodule.

In [9], Ch. G. Massouros defined a torsion-free element of an R-hypermodule M and a
torsion-free R-hypermodule followed by some results. Using that definition, we introduce
the subset TorR(M) and investigate its properties.

Definition 10. Let R be a hyperring and M be an R-hypermodule. An element m of M is said to
be a torsion element of M if there exists a nonzero element r ∈ R such that r ·m = 0M. We denote
by TorR(M) the set of all torsion elements of the R-hypermodule M i.e.,

TorR(M) = {m ∈ M | ∃r ∈ R, r 6= 0, r ·m = 0M}. (8)

Clearly, 0M ∈ TorR(M). Moreover, if M has not nonzero torsion element, i.e.,

TorR(M) = {0M},

then we called M a torsion-free R-hypermodule.

If an element m ∈ M is not a torsion element, i.e., m /∈ TorR(M), then we call m a
torsion-free element of M. Therefore, based on Definition 10, a torsion-free element is
defined as follows, which is the same as the definition of Ch. G. Massouros in [9].

Definition 11. An element m of a R-hypermodule M is called torsion-free if and only if r ·m = 0m
implies r = 0R.

Proposition 2. Let R be a hyperring and M be an R-hypermodule. Then ZR(M) = {0} if and
only if TorR(M) = {0}.

Proof. Suppose that ZR(M) = {0} and m ∈ TorR(M) be a nonzero element. Then there
exists a nonzero element r ∈ R such that r ·m = 0M. Therefore, r ∈ ZR(M) and this is a
contradiction. Therefore, m = 0 and TorR(M) = {0}. The other side of the proposition is
the same.

Example 1 ([19]). Let R = {0, 1, 2}. Define the hyperaddition “+” and multiplication “·” by
the following:



Mathematics 2023, 11, 4525 6 of 11

+ 0 1 2
0 {0} {1} {2}
1 {1} R {1}
2 {2} {1} {0,2}

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Then R is a hyperring and A = {0, 2} is the only maximal hyperideal of R. Consider
R
A = {A, 1 + A, 2 + A}, then based on Example 4.6 of [19], R

A is an R-hypermodule with the
following hyperaddition “]”

] A 1+A 2+A
A A 1+A 2+A
1+A 1+A 1+A 1+A
2+A 2+A 1+A {A, 2+A }

and the external operation � : R× R
A −→

R
A which define

r� (a + A) = r ·R a + A,

for all r ∈ R and a + A ∈ R
A . Then clearly Z(R) = {2}. Moreover, since

2� (2 + A) = 2 ·R 2 + A = A = 0 R
A

,

we conclude that ZR(M) = {0, 2} and 2 + A ∈ TorR(
R
A ), while 1 + A /∈ TorR(

R
A ). Therefore,

TorR(
R
A
) = {A, 2 + A},

and the only torsion-free element of R-hypermodule R
A is 1 + A. Moreover, we can verify that the

Proposition 2 is true in this example.

Theorem 3. Let R be a commutative hyperring such that Z(R) = ∅ and M be an R-hypermodule.
Then TorR(M) is a subhypermodule of M.

Proof. Clearly TorR(M) is not an empty set since 0M ∈ TorR(M). Suppose that m, n ∈
TorR(M). Then there exist nonzero elements r1, r2 ∈ R such that r1 ·m = 0M and r2 · n = 0M.
Put r = r1 ·R r2. Since Z(R) = ∅, r 6= 0R and

r · (m + n) = (r1 ·R r2) · (m + n) = (r1 ·R r2) ·m + (r1 ·R r2) · n =

r2 · (r1 ·m) + r1 · (r2 · n) = 0M + 0M = 0M.

Therefore, m + n ⊆ TorR(M) and TorR(M) is a subhypermodule of M.

Corollary 1. Let R be a commutative hyperdomain and M be an R-hypermodule. Then TorR(M)
is a subhypermodule of M.

Proposition 3. Let M1 and M2 be two R-hypermodules where R is a commutative hyperring. Then

TorR(M1) + TorR(M2) ⊆ TorR(M1 + M2) (9)

Proof. Suppose that m ∈ TorR(M1) + Tor2(M2). Then, based on Lemma 1, there exist
n1 ∈ TorR(M1) and n2 ∈ TorR(M2) such that m ∈ n1 + n2. Thus, there exist nonzero
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elements r1, r2 ∈ R such that r1 · n1 = 0M1 and r2 · n2 = 0M2 . Put r = r1 ·R r2. Then clearly
r 6= 0R, and we have

r ·m ∈ r · (n1 + n2) = r · n1 + r · n2 = (r1 ·R r2) · n1 + (r1 ·R r2) · n2 =

r2 · (r1 · n1) + r1 · (r2 · n2) = 0M1 + 0M2 = 0M1+M2 .

Therefore, there exists a nonzero element r ∈ R, such that r ·m = 0M1+M2 . Therefore,
using (8), m ∈ TorR(M1 + M2) and TorR(M1) + Tor2(M2) ⊆ TorR(M1 + M2).

Proposition 4. Let M be an R-hypermodule and N be an R-subhypermodule of M. Then

TorR(
M
N
) =

TorR(M)

N
(10)

Proof. Suppose that m + N ∈ TorR(M)
N is an arbitrary element. Then m ∈ TorR(M). There-

fore, a nonzero element r ∈ R exists such that r ·m = 0M. Then we have

r · (m + N) = r ·m + N = 0M + N = N = 0 M
N

.

This means that there exists r ∈ R such that r · (m + N) = 0 M
N

. Therefore, m + N ∈

TorR(
M
N ) and TorR(M)

N ⊆ TorR(
M
N ).

Now let m + N ∈ TorR(
M
N ). Then a nonzero element r ∈ R exists such that r · (m +

N) = N. Therefore,

r · (m + N) = r ·m + N = N =⇒ r ·m = 0M.

Therefore, m ∈ TorR(M) and m + N ∈ TorR(M)
N . Therefore, TorR(

M
N ) ⊆ TorR(M)

N and
we conclude that

TorR(
M
N
) =

TorR(M)

N

Definition 12. Let M be an R-hypermodule. A nonzero element m of M is said to be torsionable if
for every torsion-free element m′ of M (m′ /∈ TorR(M)), there exists r ∈ R such that m = r ·m′.
Moreover, if each nonzero element of M is a torsionable element, then M is said to be a torsionable
R-hypermodule.

Example 2. In Example 1, consider nonzero elements of R-hypermodule R
A , i.e., 1 + A and 2 + A.

Then for the only torsion-free element of R
A which is 1 + A, we have:

1 + A = 1� (1 + A), 2 + A = 2� (1 + A).

Therefore, 1 + A and 2 + A are torsionable elements of R
A and therefore R

A is a torsionable
R-hypermodule.

Proposition 5. Let M be an R-hypermodule where R is a commutative hyperring. Then, every
torsionable element of M is a divisible element.

Proof. Suppose that 0 6= m ∈ M is a torsionable element and r ∈ R is a nonzero-divisor
element over M. Then, for each n ∈ M, r · n 6= 0M. Therefore, for element m, we have
r ·m 6= 0M. Put m′ = r ·m. Then m′ 6= 0, and we claim that m′ is a torsion-free element of M.
Because if m′ ∈ TorR(M), then there exists nonzero element r′ ∈ R such that r′ ·m′ = 0M.
Therefore,

r′ ·m′ = r′ · (r ·m) = (r′ ·R r) ·m = (r ·R r′) ·m = r · (r′ ·m) = 0M
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which is a contradiction since r /∈ ZR(M). Therefore, m′ /∈ TorR(M). Since m is a torsionable
element, using Definition 12, there exists a nonzero element s ∈ R such that m = s · m′.
Therefore,

m = s ·m′ = s · (r ·m) = r · (s ·m) = r ·m1,

where m1 is an element of M. This means that m is a divisible element.

Example 3. In Example 1, ZR(
R
A ) = {0, 2} and 1 + A and 2 + A are torsionable elements of R

A .
Since for nonzero-divisor element of R over R

A , (i.e., 1 /∈ ZR(
R
A )), we have

1 + A = 1� (1 + A), 2 + A = 1� (2 + A),

thus 1 + A and 2 + A are divisible elements.

Corollary 2. Let R be a commutative hyperring and M be a torsionable R-hypermodule. Then M
is a divisible R-hypermodule.

Example 4. Using Example 3 and routine verification, we can show that the torsionable R-
hypermodule R

A in Example 2 is a divisible R-hypermodule too.

Proposition 6. Let M and N be R-hypermodules and f ∈ Homn
R(M, N) be a surjective normal

R-homomorphism. If M is a torsionable R-hypermodule, then N is a torsionable, too.

Proof. Suppose that M is a torsionable R-hypermodules and f : M −→ N is a surjective
normal R-homomorphism. Let n ∈ N be an arbitrary element and n′ /∈ TorR(N). Since
f is surjective, there exist elements m, m′ ∈ M such that f (m) = n and f (m′) = n′. First,
we claim that m′ /∈ TorR(M). To show it, suppose that m′ ∈ TorR(M). Then, there exists a
nonzero element r ∈ R such that r ·m′ = 0M. Therefore,

f (r ·m′) = r · f (m′) = r · n′ = 0N .

This means that n′ ∈ TorR(N) and this is a contradiction. Therefore, m′ /∈ TorR(M).
Since M is a torsionable R-hypermodule and m ∈ M, a nonzero element r ∈ R exists such
that m = r ·m′. Therefore

n = f (m) = f (r ·m′) = r · f (m′) = r · n′.

Therefore, N is a torsionable R-hypermodule.

Proposition 7. Let M and N be R-hypermodules and f ∈ Homn
R(M, N) be an injective normal

R-homomorphism. If N is a torsionable R-hypermodule, then M is torsionable, too.

Proof. Suppose that N is a torsionable R-hypermodules and f : M −→ N is an injective
normal R-homomorphism. Let m ∈ M be an arbitrary element and m′ /∈ TorR(M). Then
f (m) = n and f (m′) = n′ are elements of N and we claim that n′ /∈ TorR(N). To show it,
suppose that n′ ∈ TorR(N). Then there exists a nonzero element r ∈ R such that r · n′ = 0N .
Therefore,

r · n′ = r · f (m′) = f (r ·m′) = 0N .

Since f is an injective normal R-homomorphism, r · m′ = 0M, and this means that
m′ ∈ TorR(M) and this is a contradiction. Therefore, n′ /∈ TorR(N). Moreover, N is a
torsionable R-hypermodule and n ∈ N. Therefore, there exists a nonzero element r ∈ R
such that n = r · n′. Therefore

f (m) = r · f (m′) = f (r ·m′).

Using the injectivity of f , we conclude that m = r ·m′. Therefore, M is a torsionable
R-hypermodule.
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Theorem 4. Let M be a torsionable R-hypermodule and N be an R-subhypermodule of M. Then,
the quotient R-hypermodule M

N is a torsionable hypermodule, too.

Proof. Let m + N ∈ M
N be a nonzero arbitrary element and m′ + N /∈ TorR(

M
N ). Using

Proposition 4, we conclude that m′ + N /∈ TorR(M)
N . Therefore, m′ /∈ TorR(M). Since M is a

torsionable R-hypermodule, r ∈ R exists such that m = r ·m′. Therefore,

m + N = r ·m′ + N = r · (m′ + N).

This means that m+ N is a torsionable element and M
N is a torsionable R-hypermodule.

Theorem 5. Let R be a hyperring and M be a R-hypermodule. If M is torsion-free and divisible,
then M is a normal injective.

Proof. Suppose that M is a torsion-free divisible R-hypermodule. To show that M is a
normal injective, we consider the following diagram where I is a hyperideal of R, i : I −→ R
is an inclusion hyperring homomorphism and f : I −→ M is a normal R-homomorphism.

If I = 0, then the conclusion is clear. Therefore, assume that I 6= 0 and consider
a nonzero element a ∈ I. Since M is a torsion-free R-hypermodule, for every m ∈ M
such as m 6= 0M, a · m 6= 0. Therefore, using Definition 8, we conclude that a ∈ I is a
nonzero-divisor element over M, i.e., a /∈ ZR(M). Moreover, M is a divisible hypermodule
and f (a) ∈ M. Therefore, f (a) is a divisible element, and for nonzero divisor a ∈ R over
M, there exists n ∈ M such that f (a) = a · n. Let b ∈ I be an arbitrary element. Then for
the element a, we have

a · f (b) = f (a ·R b) = f (b ·R a) = b · f (a) = b · a · n = a · b · n,

thus,
a · f (b) = a · b · n,

which means that
0 ∈ a · f (b)− a · b · n = a · ( f (b)− (b · n)).

Since a 6= 0 and M is a torsion-free R-hypermodule, we conclude that

0 ∈ f (b)− b · n.

Therefore, f (b) = b · n. Now define the normal R-homomorphism g : R −→ M such
that for each r ∈ R, g(r) = r · n. Then, for each b ∈ I,

f (b) = b · n = gi(b),

which means that the diagram in Figure 2 has the composition structure, i.e., gi = f .

0 I R

M

f

i

Figure 2. Composition structure of a diagram for R-hypermodule M, using hyperideals

Theorem 6. Let R be a commutative hyperring and M be an R-hypermodule. If M is torsionable,
then M is a normal injective.

Proof. Suppose that M is a torsionable R-hypermodule. Then using Corollary 2, M is a
divisible R-hypermodule. Therefore, M is a normal injective by Theorem 5.
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Remark 1. Using Proposition 2 and Theorem 4.5 of [17], we have another proof for Theorem 5.

Theorem 7. Let R be a hyperring and M be a torsion-free normal injective R-hypermodule. Then
M is a divisible R-hypermodule.

Proof. Since M is a torsion-free normal injective R-hypermodule, TorR(M) = ∅ and by
Proposition 2, ZR(M) = ∅. Using Theorem 4.4 of [17], we conclude that M is a divisible
R-hypermodule.

Corollary 3. Let R be a hyperring and M be a torsion-free R-hypermodule. Then M is normal
injective if and only if M is divisible R-hypermodule.

4. Conclusions and Future Work

In this article, we have studied the torsion and torsionable elements in an R-hypermodule
M and introduced a torsionable R-hypermodule, where R is a Krasner hyperring. After
investigating the main properties of torsion and torsionable elements, we studied the rela-
tionship between these elements and divisible elements in an R-hypermodule. Moreover,
we investigated the relationship between torsionable and divisible R-hypermodule. Finally,
we proved that if R is a commutative hyperring and M is a torsionable R-hypermodule,
then M is a normal injective too.

In future work, we intend to apply these results to obtain new properties of normal injective
and normal projective R-hypermodule. We believe that these results will be useful in obtaining
some important results in the category point of view of hypercompositional structures.
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