Next Article in Journal
Enhanced Whale Optimization Algorithm for Improved Transient Electromagnetic Inversion in the Presence of Induced Polarization Effects
Next Article in Special Issue
Metallic Structures for Tangent Bundles over Almost Quadratic ϕ-Manifolds
Previous Article in Journal
Pursuit Problem of Unmanned Aerial Vehicles
Previous Article in Special Issue
Framed Natural Mates of Framed Curves in Euclidean 3-Space
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold

1
Department of Mathematics, Pachhunga University College, Mizoram University, Aizawl 796001, India
2
Basic Science Department, Modern Academy for Engineering and Technology, Maadi 11585, Egypt
3
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(19), 4163; https://doi.org/10.3390/math11194163
Submission received: 19 August 2023 / Revised: 24 September 2023 / Accepted: 2 October 2023 / Published: 4 October 2023
(This article belongs to the Special Issue Differential Geometry: Structures on Manifolds and Submanifolds)

Abstract

:
The purpose of the present paper is to study the complete lifts of a QSNMC from an LP-Sasakian manifold to its tangent bundle. The lifts of the curvature tensor, Ricci tensor, projective Ricci tensor, and lifts of Einstein manifold endowed with QSNMC in an LP-Sasakian manifold to its tangent bundle are investigated. Necessary and sufficient conditions for the lifts of the Ricci tensor to be symmetric and skew-symmetric and the lifts of the projective Ricci tensor to be skew-symmetric in the tangent bundle are given. An example of complete lifts of four-dimensional LP-Sasakian manifolds in the tangent bundle is shown.

1. Introduction

Tangent bundle geometry has long been a source of interest in differential geometry. Tangent bundle investigation introduces several novel challenges to the study of modern differential geometry. Using the lift function, it is convenient to generalize differentiable structures on any manifold M to its tangent bundle. The theory of vertical, complete, and horizontal lifts of geometrical structures and connections from a manifold to its tangent bundle was developed by Yano and Ishihara [1]. Numerous researchers have examined various connections and geometric structures on the tangent bundle like Yano and Kobayashi [2], Tani [3], Pandey and Chaturvedi [4], and Khan [5,6]. Different lifts of metallic structures to tangent bundles have been studied in [7,8,9]. Tangent bundles immersed with quarter-symmetric non-metric connections, semi-symmetric P-connections, and semi-symmetric non-metric connections on almost Hermitian manifolds, Kähler manifolds, Kenmotsu manifolds, Sasakian manifolds, para-Sasakian manifolds, Riemannian manifolds and their submanifolds, and statistical manifolds and their submanifolds have been studied in [5,10,11,12,13,14,15,16,17,18]. Recently, Khan et al. [19] studied the tangent bundle of P-Sasakian manifolds endowed with a quarter-symmetric metric connection (QSMC).
On the other hand, the notion of quarter-symmetric connection in a Riemannian manifold with affine connection was introduced by Golab in 1975 [20]. This was further developed by many geometers like Yano and Imai [21], Rastogi [22,23], Mishra and Pandey [24], Mukhopadhyay et al. [25], Biswas and De [26], Sengupta and Biswas [27], Singh and Pandey [28], and others.
Let ∇ be a linear connection on an n-dimensional differentiable manifold M n of class C . If the torsion tensor T of ∇ defined by
T ( X 0 , Y 0 ) = X 0 Y 0 Y 0 X 0 [ X 0 , Y 0 ] ,
satisfies
T ( X 0 , Y 0 ) = λ 0 ( Y 0 ) ϕ 0 X 0 λ 0 ( X 0 ) ϕ 0 Y 0 ,
where λ 0 is a 1-form and ϕ 0 is a ( 1 , 1 ) tensor field, then the connection ∇ is called a quarter-symmetric connection [21,29,30]. Also, if ∇ satisfies
( X 0 g ) ( Y 0 , Z 0 ) 0 ,
for all X 0 , Y 0 , Z 0 X ( M n ) , the set of all vector fields on M n , then ∇ is called a quarter-symmetric non-metric connection (QSNMC).
We start this paper with Section 1. Section 2 is devoted to preliminaries. In Section 3, a QSNMC in an LP-Sasakian manifold is studied. The complete lifts of LP-Sasakian manifolds and QSNMC in an LP-Sasakian manifold to its tangent bundle are investigated in Section 4 and Section 5. In Section 6 and Section 7, the complete lifts of the curvature tensor and symmetric and skew-symmetric condition of the Ricci tensor in an LP-Sasakian manifold endowed with QSNMC to its tangent bundle are investigated. The skew-symmetric properties of the projective Ricci tensor and Einstein manifold endowed with QSNMC in an LP-Sasakian manifold to its tangent bundle are studied in Section 8 and Section 9. Lastly, an example of the lift of four-dimensional LP-Sasakian manifolds to its tangent bundle is shown in Section 9, followed by a conclusion section.

2. Preliminaries

Let M n be a differentiable manifold and T 0 M n = p M n T 0 p M n be the tangent bundle, where T 0 p M n is the tangent space at a point p M n and π : T 0 M n M n is the natural bundle structure of T 0 M n over M n . For any co-ordinate system ( Q , x h ) in M n , where ( x h ) is a local co-ordinate system in the neighborhood Q, then ( π 1 ( Q ) , x h , y h ) is a co-ordinate system in T 0 M n , where ( x h , y h ) is an induced co-ordinate system in π 1 ( Q ) from ( x h ) [1].

2.1. Vertical and Complete Lifts

Let us define a vector field X 0 , a tensor field F 0 of type ( 1 , 1 ) , a function f 0 , a 1-form ω 0 , and an affine connection ∇ in M n ; their vertical and complete lifts are denoted by f 0 v , X 0 v , ω 0 v , F 0 v , v , and f 0 c , X 0 c , ω 0 c , F 0 c , c , respectively. The following formulas of complete and vertical lifts are defined by [1,5]
( f 0 X 0 ) v = f 0 v X 0 v , ( f 0 X 0 ) c = f 0 c X 0 v + f 0 v X 0 c ,
X 0 v f 0 v = 0 , X 0 v f 0 c = X 0 c f 0 v = ( X 0 f 0 ) v , X 0 c f 0 c = ( X 0 f 0 ) c ,
ω 0 ( f 0 v ) = 0 , ω 0 v ( X 0 c ) = ω 0 c ( X 0 v ) = ω 0 ( X 0 ) v , ω 0 c ( X 0 c ) = ω 0 ( X 0 ) c ,
F 0 v X 0 c = ( F 0 X 0 ) v , F 0 c X 0 c = ( F 0 X 0 ) c ,
[ X 0 , Y 0 ] v = [ X 0 c , Y 0 v ] = [ X 0 v , Y 0 c ] , [ X 0 , Y 0 ] c = [ X 0 c , Y 0 c ] ,
c X 0 c Y 0 c = ( X 0 Y 0 ) c , c X 0 c Y 0 v = ( X 0 Y 0 ) v .
Suppose T 0 M is the tangent bundle and let X 0 = X 0 i x i be a local vector field on M, then its vertical and complete lifts in the term of partial differential equations are
X 0 v = X 0 i y i and X 0 c = X 0 i x i + X 0 i x j y j y i .

2.2. LP-Sasakian Manifolds

An n-dimensional differentiable manifold M n is called a Lorentzian para-Sasakian (briefly LP-Sasakian) [31] of dimension n if it admits a ( 1 , 1 ) - tensor field ϕ 0 , a contravariant vector field ξ 0 , a 1-form η 0 , and a Lorentzian metric g which satisfy
ϕ 0 2 ( X 0 ) = X 0 + η 0 ( X 0 ) ξ 0 ,
η 0 ( ξ 0 ) = 1 ,
g ( ϕ 0 X 0 , ϕ 0 Y 0 ) = g ( X 0 , Y 0 ) + η 0 ( X 0 ) η 0 ( Y 0 ) ,
g ( X 0 , ξ 0 ) = η 0 ( X 0 ) ,
( X 0 ϕ 0 ) ( Y 0 ) = g ( X 0 , Y 0 ) ξ 0 + η 0 ( Y 0 ) X 0 + 2 η 0 ( X 0 ) η 0 ( Y 0 ) ξ 0 ,
X 0 ξ 0 = ϕ 0 X 0 .
In an LP-Sasakian manifold, the following relations also hold:
ϕ 0 ξ 0 = 0 , η 0 ϕ 0 = 0 ,
rank ϕ 0 = n 1 .
If we take a tensor field Φ 0 ( X 0 , Y 0 ) as
Φ 0 ( X 0 , Y 0 ) = g ( X 0 , ϕ 0 Y 0 ) ,
for any vector fields X 0 and Y 0 , then the tensor field Φ 0 ( X 0 , Y 0 ) is a symmetric ( 0 , 2 ) tensor field [31]. Since the 1-form η 0 is closed in an LP-Sasakian manifold, we have [31,32]
( X 0 η 0 ) ( Y 0 ) = Φ 0 ( X 0 , Y 0 ) , Φ 0 ( X 0 , ξ 0 ) = 0 ,
for all X 0 , Y 0 M n . In an LP-Sasakian manifold, the following relations hold [32,33]:
g ( R 0 ( X 0 , Y 0 ) Z 0 , ξ 0 ) = g ( Y 0 , Z 0 ) η 0 ( X 0 ) g ( X 0 , Z 0 ) η 0 ( Y 0 ) ,
R 0 ( ξ 0 , X 0 ) Y 0 = g ( X 0 , Y 0 ) ξ 0 η 0 ( Y 0 ) X 0 ,
R 0 ( X 0 , Y 0 ) ξ 0 = η 0 ( Y 0 ) X 0 η 0 ( X 0 ) Y 0 ,
R 0 ( ξ 0 , X 0 ) ξ 0 = X 0 + η 0 ( X 0 ) ξ 0 ,
S 0 ( X 0 , ξ 0 ) = ( n 1 ) η 0 ( X 0 ) ,
S 0 ( ϕ 0 X 0 , ϕ 0 Y 0 ) = S 0 ( X 0 , Y 0 ) + ( n 1 ) η 0 ( X 0 ) η 0 ( Y 0 ) ,
where R 0 is the Riemannian curvature tensor and S 0 is the Ricci tensor of the manifold.

3. QSNMC

In an LP-Sasakian manifold ( M n , g ) , the linear connection ¨ on M n is given by [29]
¨ X 0 Y 0 = X 0 Y 0 + η 0 ( Y 0 ) ϕ 0 X 0 + a 0 ( X 0 ) ϕ 0 Y 0 ,
where η 0 and a 0 are 1-form associated with vector field ξ 0 and A 0 on M n is given by
η 0 ( X 0 ) = g ( X 0 , ξ 0 ) ,
a 0 ( X 0 ) = g ( X 0 , A 0 ) ,
for all vector fields X 0 X 0 ( M n ) , where X 0 ( M n ) is the set of all differentiable vector fields on M n and the torsion tensor is given by
T ¨ ( X 0 , Y 0 ) = η 0 ( Y 0 ) ϕ 0 X 0 η 0 ( X 0 ) ϕ 0 Y 0 + a 0 ( X 0 ) ϕ 0 Y 0 a 0 ( Y 0 ) ϕ 0 X 0 .
A linear connection satisfying (29) is called a quarter-symmetric connection. Further, by using (26), we have
( ¨ X 0 g ) ( Y 0 , Z 0 ) = η 0 ( Y 0 ) g ( ϕ 0 X 0 , Z 0 ) η 0 ( Z 0 ) g ( ϕ 0 X 0 , Y 0 ) 2 a 0 ( X 0 ) g ( ϕ 0 Y 0 , Z 0 ) .
A linear connection ¨ defined by (26) which satisfies (29) and (30) is called QSNMC.

4. Complete Lifts from an LP-Sasakian Manifold to Its Tangent Bundle

Let the tangent bundle be denoted by T 0 M n in an LP-Sasakian manifold ( M n , g ) . Taking complete lifts by mathematical operators on (10)–(16) and (18)–(25), we obtain
( ϕ 0 2 ( X 0 ) ) c = X 0 c + η 0 c ( X 0 c ) ξ 0 v + η 0 v ( X 0 c ) ξ 0 c ,
η 0 c ( ξ 0 c ) = η 0 v ( ξ 0 v ) = 0 , η 0 c ( ξ 0 v ) = η 0 v ( ξ 0 c ) = 1 ,
g c ( ϕ 0 X 0 ) c , ( ϕ 0 Y 0 ) c = g c ( X 0 c , Y 0 c ) + η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X c ) η 0 c ( Y 0 c ) ,
g c ( X 0 c , ξ 0 c ) = η 0 c ( X 0 c ) ,
( X 0 c c ϕ 0 c ) Y 0 c = g c ( X 0 c , Y 0 c ) ξ 0 v + g c ( X 0 v , Y 0 c ) ξ 0 c + η 0 c ( Y 0 c ) X 0 v + η 0 v ( Y 0 c ) X 0 c + 2 η 0 c ( X 0 c ) η 0 c ( Y 0 c ) ξ 0 v + η 0 c ( X 0 c ) η 0 v ( Y 0 c ) ξ 0 c + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) ξ 0 c ,
X 0 c c ξ 0 c = ( ϕ 0 X 0 ) c ,
ϕ 0 c ξ 0 c = ϕ 0 v ξ 0 v = ϕ 0 c ξ 0 v = ϕ 0 v ξ 0 c = 0 ,
η 0 c ϕ 0 c = η 0 v ϕ 0 v = η 0 c ϕ 0 v = η 0 v ϕ 0 c = 0 ,
Φ 0 c ( X 0 c , Y 0 c ) = g c ( X 0 c , ϕ 0 c Y 0 c ) ,
( X 0 c c η 0 c ) Y 0 c = Φ 0 c ( X 0 c , Y 0 c ) ,
Φ 0 c ( X 0 c , ξ 0 c ) = 0 ,
g c ( R c ( X 0 c , Y 0 c ) Z 0 c , ξ 0 c ) = g c ( Y 0 c , Z 0 c ) η 0 v ( X 0 c ) + g c ( Y 0 v , Z 0 c ) η 0 c ( X 0 c ) g c ( X 0 c , Z 0 c ) η 0 v ( Y 0 c ) g c ( X 0 v , Z 0 c ) η 0 c ( Y 0 c ) ,
R c ( ξ c , X 0 c ) Y 0 c = g c ( X 0 c , Y 0 c ) ξ 0 v + g c ( X 0 v , Y 0 c ) ξ 0 c η 0 c ( Y 0 c ) X 0 v η 0 v ( Y 0 c ) X 0 c ,
R c ( X 0 c , Y 0 c ) ξ 0 c = η 0 c ( Y 0 c ) X 0 v + η 0 v ( Y 0 c ) X 0 c η 0 c ( X 0 c ) Y 0 v η 0 v ( X 0 c ) Y 0 c ,
R c ( ξ 0 c , X 0 c ) ξ 0 c = X 0 c + η 0 c ( X 0 c ) ξ 0 v + η 0 v ( X 0 c ) ξ 0 c ,
S c ( X 0 c , ξ 0 c ) = ( n 1 ) η 0 c ( X 0 c ) ,
S c ( ϕ 0 c X 0 c , ϕ 0 c Y 0 c ) = S c ( X 0 c , Y 0 c ) + ( n 1 ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) .

5. Complete Lifts of QSNMC of an LP-Sasakian Manifold in the Tangent Bundle

In an LP-Sasakian manifold ( M n , g ) and its tangent bundle T 0 M n , let us take complete lifts by mathematical operators on Equations (26)–(30), and we have
¨ X 0 c c Y 0 c = X 0 c c Y 0 c + η 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + η 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c + a c ( X 0 c ) ( ϕ 0 Y 0 ) v + a v ( X 0 c ) ( ϕ 0 Y 0 ) c ,
T ¨ c ( X 0 c , Y 0 c ) = η 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + η 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c η 0 c ( X 0 c ) ( ϕ 0 Y 0 ) v η 0 v ( X 0 c ) ( ϕ 0 Y 0 ) c + a 0 c ( X 0 c ) ( ϕ 0 Y 0 ) v + a 0 v ( X 0 c ) ( ϕ 0 Y 0 ) c a 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v a 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c ,
η 0 c ( X 0 c ) = g c ( X 0 c , ξ 0 c ) ,
a c ( X 0 c ) = g c ( X 0 c , A 0 c ) ,
( ¨ X 0 c c g c ) ( Y 0 c , Z 0 c ) = η 0 c ( Y 0 c ) g c ( ϕ 0 X 0 ) v , Z 0 c η 0 v ( Y 0 c ) g c ( ϕ 0 X 0 ) c , Z 0 c η 0 c ( Z 0 c ) g c ( ϕ 0 X 0 ) v , Y 0 c η 0 v ( Z 0 c ) g c ( ϕ 0 X 0 ) c , Y 0 c 2 a c ( X 0 c ) g c ( ϕ 0 Y 0 ) v , Z 0 c 2 a v ( X 0 c ) g c ( ϕ 0 Y 0 ) c , Z 0 c .
The connection given by Equation (48) is said to be a QSNMC on an LP-Sasakian manifold in its tangent bundle if the torsion tensor T ¨ c of T 0 M n endowed with ¨ c satisfies Equation (49) and the complete lifts of Lorentzian metric g c fulfill the relation (52).
Theorem 1.
If an LP-Sasakian manifold ( M n , g ) with an almost Lorentzian para-contact metric structure ( ϕ 0 , ξ 0 , η 0 , g ) admitting a QSNMC ¨ which satisfies (49) and (52), then the QSNMC in the tangent bundle is given by
¨ X 0 c c Y 0 c = X 0 c c Y 0 + η 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + η 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c + a c ( X 0 c ) ( ϕ 0 Y 0 ) v + a v ( X 0 c ) ( ϕ 0 Y 0 ) c .
Proof. 
Let ¨ c be the complete lifts of a linear connection in M n given by
¨ X 0 c c Y 0 c = X 0 c c Y 0 c + H 0 c ( X 0 c , Y 0 c ) .
Now, we shall determine the complete lifts of the tensor field H 0 c such that ¨ c satisfies (49) and (52). From (53), we have
T ¨ c ( X 0 c , Y 0 c ) = H 0 c ( X 0 c , Y 0 c ) H 0 c ( Y 0 c , X 0 c ) .
We denote
G 0 c ( X 0 c , Y 0 c , Z 0 c ) = ( ¨ X 0 c c g c ) ( Y 0 c , Z 0 c ) .
From (53) and (55), we have
g c H 0 c ( X 0 c , Y 0 c ) , Z 0 c + g c H 0 c ( X 0 c , Z 0 c ) , Y 0 c = G 0 c ( X 0 c , Y 0 c , Z 0 c ) .
Using (52), (53), (55), and (56) we have
g c T ¨ c ( X 0 c , Y 0 c ) , Z 0 c + g c T ¨ c ( Z 0 c , X 0 c ) , Y 0 c + g c T ¨ c ( Z 0 c , Y 0 c ) , X 0 c = g c H 0 c ( X 0 c , Y 0 c ) , Z 0 c g c H 0 c ( Y 0 c , X 0 c ) , Z 0 c + g c H 0 c ( Z 0 c , X 0 c ) , Y 0 c g c H 0 c ( X 0 c , Z 0 c ) , Y 0 c + g c H 0 c ( Z 0 c , Y 0 c ) , X 0 c g c H 0 c ( Y 0 c , Z 0 c ) , X 0 c = g c H 0 c ( X 0 c , Y 0 c ) , Z 0 c g c H 0 c ( X 0 c , Z 0 c ) , Y 0 c G 0 c ( Z 0 c , X 0 c , Y 0 c ) + G 0 c ( Y 0 c , X 0 c , Z 0 c ) = 2 g c H 0 c ( X 0 c , Y 0 c ) , Z 0 c + G 0 c ( X 0 c , Y 0 c , Z 0 c ) + G 0 c ( Y 0 c , X 0 c , Z 0 c ) G 0 c ( Z 0 c , X 0 c , Y 0 c ) = 2 g c H 0 c ( X 0 c , Y 0 c ) , Z 0 c 2 η 0 c ( Z 0 c ) g c ( ϕ 0 X 0 ) v , Y 0 c + η 0 v ( Z 0 c ) g c ( ϕ 0 X 0 ) c , Y 0 c 2 a 0 c ( X 0 c ) g c ( ϕ 0 Y 0 ) v , Z 0 c + a 0 v ( X 0 c ) g c ( ϕ 0 Y 0 ) c , Z 0 c 2 { a 0 c ( Y 0 c ) g c ( ϕ 0 X 0 ) v , Z 0 c + a 0 v ( Y 0 c ) g c ( ϕ 0 X 0 ) c , Z 0 c } + 2 a 0 c ( Z 0 c ) g c ( ϕ 0 X 0 ) v , Y 0 c + a 0 v ( Z 0 c ) g c ( ϕ 0 X 0 ) c , Y 0 c ,
or,
H 0 c ( X 0 c , Y 0 c ) = 1 2 T ¨ c ( X 0 c , Y 0 c ) + T ¨ c ( X 0 c , Y 0 c ) + T ¨ c ( Y 0 c , X 0 c ) + a 0 c ( X 0 c ) ( ϕ 0 Y 0 ) v + a 0 v ( X 0 c ) ( ϕ 0 Y 0 ) c + a 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + a 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c + g c ϕ 0 X 0 ) c , Y 0 c ξ 0 v + g c ϕ 0 X 0 ) v , Y 0 c ξ 0 c g c ϕ 0 X 0 ) c , Y 0 c A 0 v g c ϕ 0 X 0 ) v , Y 0 c A 0 c ,
where T ¨ c is a tensor field of type ( 1 , 2 ) defined by
g c T ¨ c ( X 0 c , Y 0 c ) , Z 0 c = g c T ¨ c ( Z 0 c , X 0 c ) , Y 0 c ,
or,
H 0 c ( X 0 c , Y 0 c ) = η 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + η 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c + a c ( X 0 c ) ( ϕ 0 Y 0 ) v + a v ( X 0 c ) ( ϕ 0 Y 0 ) c ,
which gives
¨ X 0 c c Y 0 c = X 0 c c Y 0 + η 0 c ( Y 0 c ) ( ϕ 0 X 0 ) v + η 0 v ( Y 0 c ) ( ϕ 0 X 0 ) c + a c ( X 0 c ) ( ϕ 0 Y 0 ) v + a v ( X 0 c ) ( ϕ 0 Y 0 ) c .

6. Curvature Tensor of LP-Sasakian Manifolds Endowed with QSNMC to Tangent Bundle

Let R ¨ 0 c and R 0 c be the curvature tensors of the connections ¨ c and c to tangent bundle T 0 M n , respectively.
R ¨ 0 c ( X 0 c , Y 0 c ) Z 0 c = ¨ X 0 c c ¨ Y 0 c c Z 0 c ¨ Y 0 c c ¨ X 0 c c Z 0 c ¨ [ X 0 c , Y 0 c ] c Z 0 c .
Using (48) in (57), we have
R ¨ 0 c ( X 0 c , Y 0 c ) Z 0 c = R 0 c ( X 0 c , Y 0 c ) Z 0 c + g c ( ϕ 0 X 0 ) c , Z 0 c ( ϕ 0 Y 0 ) v + g c ( ϕ 0 X 0 ) v , Z 0 c ( ϕ 0 Y 0 ) c g c ( ϕ 0 Y 0 ) c , Z 0 c ( ϕ 0 X 0 ) v g c ( ϕ 0 Y 0 ) v , Z 0 c ( ϕ 0 X 0 ) c + η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) X 0 v + η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) X 0 c + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) X 0 c η 0 c ( X 0 c ) η 0 c ( Z 0 c ) Y 0 v η 0 c ( X 0 c ) η 0 v ( Z 0 c ) Y 0 c η 0 v ( X 0 c ) η 0 c ( Z 0 c ) Y 0 c + a 0 c ( Y 0 c ) g c ( X 0 c , Z 0 c ) ξ 0 v + a 0 c ( Y 0 c ) g c ( X 0 v , Z 0 c ) ξ 0 c + a 0 v ( Y 0 c ) g c ( X 0 c , Z 0 c ) ξ 0 c a 0 c ( X 0 c ) g c ( Y 0 c , Z 0 c ) ξ 0 v a 0 c ( X 0 c ) g c ( Y 0 v , Z 0 c ) ξ 0 c a 0 v ( X 0 c ) g c ( Y 0 c , Z 0 c ) ξ 0 c + a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) ξ 0 v + a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 v ( Z 0 c ) ξ 0 c + a 0 c ( Y 0 c ) η 0 v ( X 0 c ) η 0 c ( Z 0 c ) ξ 0 c + a 0 v ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) ξ 0 c a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) ξ 0 v a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) ξ 0 c a 0 c ( X 0 c ) η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) ξ 0 c a 0 v ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) ξ 0 c + da 0 c ( X 0 c , Y 0 c ) ( ϕ 0 Z 0 ) v + da 0 v ( X 0 c , Y 0 c ) ( ϕ 0 Z 0 ) c ,
where
R 0 c ( X 0 c , Y 0 c ) Z 0 c = X 0 c c Y 0 c c Z 0 Y 0 c c X 0 c c Z 0 [ X 0 c , Y 0 c ] c Z 0 c ,
is the curvature tensor of c with respect to the Riemannian connection. Contracting (58), we obtain
S ¨ 0 c ( Y 0 c , Z 0 c ) = S 0 c ( Y 0 c , Z 0 c ) γ c g c ( ϕ 0 Y 0 ) c , Z 0 c + 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , Z 0 c ) + η 0 c a 0 c ( ξ 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) + da 0 c ( ϕ 0 Z 0 ) c , Y 0 c ,
and
r 0 ¨ c = r 0 c ( n 1 ) a 0 c ( ξ 0 c ) + λ 0 c γ c 2 ,
where S ¨ 0 c and r 0 ¨ c are the Ricci tensor and scalar curvature with respect to ¨ c .
λ 0 c = trace da 0 c ( ϕ 0 Z 0 ) c , Y 0 c and γ c = trace ϕ 0 c .
Theorem 2.
In an LP-Sasakian manifold ( M n , g ) with tangent bundle T 0 M n admitting QSNMC, we have the following:
  • The complete lifts of curvature tensor R ¨ 0 c are given by Equation (58).
  • The complete lifts of Ricci tensor S ¨ 0 c are given by Equation (60).
  • The complete lifts of scalar curvature r 0 ¨ are given by Equation (61).
Let us consider that R ¨ 0 c ( X 0 c , Y 0 c ) = 0 in (58), and by contracting it we also obtain
S 0 c ( Y 0 c , Z 0 c ) = γ c g c ( ϕ 0 Y 0 ) c , Z 0 c 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , Z 0 c ) η 0 c a 0 c ( ξ 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) da 0 c ( ϕ 0 Z 0 ) c , Y 0 c ,
which gives
r 0 c = ( n 1 ) a 0 c ( ξ 0 c ) λ 0 c + γ c 2 .
Theorem 3.
In an LP-Sasakian manifold, ( M n , g ) , with tangent bundle T 0 M n endowed with QSNMC whose curvature tensor vanishes, then the complete lift of r 0 c is given by (64).
From (58), it follows that
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) + R ¨ 0 c ( Y 0 c , X 0 c , Z 0 c , W 0 c ) = 0 ,
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) + R ¨ 0 c ( X 0 c , Y 0 c , W 0 c , Z 0 c ) = η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) g c ( X 0 c , W 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) g c ( X 0 c , W 0 c ) η 0 c ( X 0 c ) η 0 v ( Z 0 c ) g c ( Y 0 c , W 0 c ) η 0 v ( X 0 c ) η 0 c ( Z 0 c ) g c ( Y 0 c , W 0 c ) + η 0 c ( Y 0 c ) η 0 v ( W 0 c ) g c ( X 0 c , Z 0 c ) + η 0 v ( Y 0 c ) η 0 c ( W 0 c ) g c ( X 0 c , Z 0 c ) η 0 c ( X 0 c ) η 0 v ( W 0 c ) g c ( Y 0 c , Z 0 c ) η 0 v ( X 0 c ) η 0 c ( W 0 c ) g c ( Y 0 c , Z 0 c ) + a 0 c ( Y 0 c ) η 0 v ( W 0 c ) g c ( X 0 c , Z 0 c ) + a 0 v ( Y 0 c ) η 0 c ( W 0 c ) g c ( X 0 c , Z 0 c ) a 0 c ( X 0 c ) η 0 v ( W 0 c ) g c ( Y 0 c , Z 0 c ) a 0 v ( X 0 c ) η 0 c ( W 0 c ) g c ( Y 0 c , Z 0 c ) + a 0 c ( Y 0 c ) η 0 v ( Z 0 c ) g c ( X 0 c , W 0 c ) + a 0 v ( Y 0 c ) η 0 c ( Z 0 c ) g c ( X 0 c , W 0 c ) a 0 c ( X 0 c ) η 0 v ( Z 0 c ) g c ( Y 0 c , W 0 c ) a 0 v ( X 0 c ) η 0 c ( Z 0 c ) g c ( Y 0 c , W 0 c ) + 2 [ a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) η 0 v ( W 0 c ) + a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 v ( Z 0 c ) η 0 c ( W 0 c ) + a 0 c ( Y 0 c ) η 0 v ( X 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) + a 0 v ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) ] 2 [ a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) η 0 v ( W 0 c ) + a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) η 0 c ( W 0 c ) + a 0 c ( X 0 c ) η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) + a 0 v ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) ] + 2 da 0 c ( X 0 c , Y 0 c ) g c ( ϕ 0 Z 0 ) c , W 0 c .
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) R ¨ 0 c ( Z 0 c , W 0 c , X 0 c , Y 0 c ) = η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) g c ( X 0 c , W 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) g c ( X 0 c , W 0 c ) η 0 c ( X 0 c ) η 0 v ( W 0 c ) g c ( Y 0 c , Z 0 c ) η 0 v ( X 0 c ) η 0 c ( W 0 c ) g c ( Y 0 c , Z 0 c ) + a 0 c ( Y 0 c ) η 0 v ( W 0 c ) g c ( X 0 c , Z 0 c ) + a 0 v ( Y 0 c ) η 0 c ( W 0 c ) g c ( X 0 c , Z 0 c ) a 0 c ( X 0 c ) η 0 v ( W 0 c ) g c ( Y 0 c , Z 0 c ) a 0 v ( X 0 c ) η 0 c ( W 0 c ) g c ( Y 0 c , Z 0 c ) + a 0 c ( Z 0 c ) η 0 v ( Y 0 c ) g c ( X 0 c , W 0 c ) + a 0 v ( Z 0 c ) η 0 c ( Y 0 c ) g c ( X 0 c , W 0 c ) a 0 c ( W 0 c ) η 0 v ( Y 0 c ) g c ( X 0 c , Z 0 c ) a 0 v ( W 0 c ) η 0 c ( Y 0 c ) g c ( X 0 c , Z 0 c ) + a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) η 0 v ( W 0 c ) + a 0 c ( Y 0 c ) η 0 c ( X 0 c ) η 0 v ( Z 0 c ) η 0 c ( W 0 c ) + a 0 c ( Y 0 c ) η 0 v ( X 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) + a 0 v ( Y 0 c ) η 0 c ( X 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) η 0 v ( W 0 c ) a 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) η 0 c ( W 0 c ) a 0 c ( X 0 c ) η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) a 0 v ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) η 0 c ( W 0 c ) + a 0 c ( Z 0 c ) η 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 v ( W 0 c ) + a 0 c ( Z 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) η 0 c ( W 0 c ) + a 0 c ( Z 0 c ) η 0 v ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( W 0 c ) + a 0 v ( Z 0 c ) η 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( W 0 c ) a 0 c ( W 0 c ) η 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) a 0 c ( W 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) a 0 c ( W 0 c ) η 0 v ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) a 0 v ( W 0 c ) η 0 c ( X 0 c ) η 0 c ( Y 0 c ) η 0 c ( Z 0 c ) + da 0 c ( X 0 c , Y 0 c ) g c ( ϕ 0 Z 0 ) c , W 0 c da 0 c ( Z 0 c , W 0 c ) g c ( ϕ 0 X 0 ) c , Y 0 c ,
and
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) + R ¨ 0 c ( Y 0 c , Z 0 c , X 0 c , W 0 c ) + R ¨ 0 c ( Z 0 c , X 0 c , Y 0 c , W 0 c ) = da 0 c ( X 0 c , Y 0 c ) g c ( ϕ 0 Z 0 ) c , W 0 c + da 0 c ( Y 0 c , Z 0 c ) g c ( ϕ 0 X 0 ) c , W 0 c + da 0 c ( Z 0 c , X 0 c ) g c ( ϕ 0 Y 0 ) c , W 0 c .
If the 1-form a 0 c is closed, then from (68) we have
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) + R ¨ 0 c ( Y 0 c , Z 0 c , X 0 c , W 0 c ) + R ¨ 0 c ( Z 0 c , X 0 c , Y 0 c , W 0 c ) = 0 ,
where
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) = g c R ¨ 0 c ( X 0 c , Y 0 c ) Z 0 c , W 0 c and R 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) = g c R 0 c ( X 0 c , Y 0 c ) Z 0 c , W 0 c .
Theorem 4.
In an LP-Sasakian manifold, ( M n , g ) with tangent bundle T 0 M n endowed with a QSNMC, the curvature tensor satisfies relations (65)–(68). In particular, if the complete lift of 1-form a 0 c is closed, then
R ¨ 0 c ( X 0 c , Y 0 c , Z 0 c , W 0 c ) + R ¨ 0 c ( Y 0 c , Z 0 c , X 0 c , W 0 c ) + R ¨ 0 c ( Z 0 c , X 0 c , Y 0 c , W 0 c ) = 0 .

7. Symmetric and Skew-Symmetric Condition of the Ricci Tensor of ¨ c in an LP-Sasakian Manifold Endowed with a QSNMC to Tangent Bundle

From Equation (60), we have
S ¨ 0 c ( Z 0 c , Y 0 c ) = S 0 c ( Z 0 c , Y 0 c ) γ c g c ( ϕ 0 Z 0 ) c , Y 0 c + 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , Z 0 c ) + η 0 c a 0 c ( ξ 0 c ) [ η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) ] + da 0 c ( ϕ 0 Y 0 ) c , Z 0 c .
From (60) and (70), we have
S ¨ 0 c ( Y 0 c , Z 0 c ) S ¨ 0 c ( Z 0 c , Y 0 c ) = da 0 c ( ϕ 0 Z 0 ) c , Y 0 c da 0 c ( ϕ 0 Y 0 ) c , Z 0 c .
If S ¨ 0 c ( Y 0 c , Z 0 c ) is symmetric, then the left-hand side of (71) vanishes, and then
da 0 c ( ϕ 0 Z 0 ) c , Y 0 c = da 0 c ( ϕ 0 Y 0 ) c , Z 0 c .
Moreover, if Equation (72) holds, then from (71), S ¨ 0 c ( Y 0 c , Z 0 c ) is symmetric.
Theorem 5.
In an LP-Sasakian manifold ( M n , g ) with tangent bundle T 0 M n endowed with QSNMC ¨ c , the Ricci tensor S ¨ 0 c ( Y 0 c , Z 0 c ) with respect to QSNMC is symmetric if and only if relation (72) holds.
From (60) and (70), we have
S ¨ 0 c ( Y 0 c , Z 0 c ) + S ¨ 0 c ( Z 0 c , Y 0 c ) = 2 S 0 c ( Y 0 c , Z 0 c ) 2 γ c g c ( ϕ 0 Y 0 ) c , Z 0 c + 2 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , Z 0 c ) + 2 n a 0 c ( ξ 0 c ) [ η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) + η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) ] + da 0 c ( ϕ 0 Y 0 ) c , Z 0 c + da 0 c ( ϕ 0 Z 0 ) c , Y 0 c .
By taking the skew-symmetry of S ¨ 0 c ( Y 0 c , Z 0 c ) , the left-hand side of (73) will vanish and we have
S 0 c ( Y 0 c , Z 0 c ) = γ c g c ( ϕ 0 Y 0 ) c , Z 0 c 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , Z 0 c ) n a 0 c ( ξ 0 c ) η 0 c ( Y 0 c ) η 0 v ( Z 0 c ) η 0 v ( Y 0 c ) η 0 c ( Z 0 c ) 1 2 da 0 c ( ϕ 0 Y 0 ) c , Z 0 c + da 0 c ( ϕ 0 Z 0 ) c , Y 0 c .
Moreover if S 0 c ( Y 0 c , Z 0 c ) is given by (74), then from (73), we have
S 0 c ( Y 0 c , Z 0 c ) + S 0 c ( Z 0 c , Y 0 c ) = 0 .
Theorem 6.
The necessary and sufficient condition for the Ricci tensor of ¨ c in an LP-Sasakian manifold ( M n , g ) endowed with QSNMC ¨ c in the tangent bundle T 0 M n to be skew-symmetric is that the Ricci tensor of the Levi-Civita connection c is given by (74).

8. Skew-Symmetric Properties of the Projective Ricci Tensor in an LP-Sasakian Manifold Endowed with QSNMC ¨ c in the Tangent Bundle

Chaki and Saha defined the projective Ricci tensor in a Riemannian manifold as [34]
P 0 ( X 0 , Y 0 ) = n n 1 S 0 ( X 0 , Y 0 ) r 0 n g ( X 0 , Y 0 ) .
So, the projective Ricci tensor with respect to QSNMC ¨ is defined as
P ¨ 0 ( X 0 , Y 0 ) = n n 1 S ¨ 0 ( X 0 , Y 0 ) r ¨ 0 n g ( X 0 , Y 0 ) .
Taking a complete lift by mathematical operators on (76), we have
P ¨ 0 c ( X 0 c , Y 0 c ) = n n 1 S ¨ 0 c ( X 0 c , Y 0 c ) r ¨ 0 c n g c ( X 0 c , Y 0 c ) .
Using (60) and (61) in (77), we have
P ¨ 0 c ( X 0 c , Y 0 c ) = n n 1 [ S 0 c ( X 0 c , Y 0 c ) γ c g c ( ϕ 0 X 0 ) c , Y 0 c + 1 a 0 c ( ξ 0 c ) g c ( X 0 c , Y 0 c ) + n a 0 c ( ξ 0 c ) ( η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) ) + da 0 c ( ϕ 0 Y 0 ) c , X 0 c 1 n r 0 c ( n 1 ) a 0 c ( ξ 0 c ) + λ 0 c γ c 2 g c ( X 0 c , Y 0 c ) ] .
Similarly, we have
P ¨ 0 c ( Y 0 c , X 0 c ) = n n 1 [ S 0 c ( Y 0 c , X 0 c ) γ c g c ( ϕ 0 Y 0 ) c , X 0 c + 1 a 0 c ( ξ 0 c ) g c ( Y 0 c , X 0 c ) + n a 0 c ( ξ 0 c ) ( η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) ) + da 0 c ( ϕ 0 X 0 ) c , Y 0 c 1 n r 0 c ( n 1 ) a 0 c ( ξ 0 c ) + λ 0 c γ c 2 g c ( Y 0 c , X 0 c ) ] .
From (78) and (79), we have
P ¨ 0 c ( X 0 c , Y 0 c ) + P ¨ 0 c ( Y 0 c , X 0 c ) = n n 1 [ 2 S 0 c ( X 0 c , Y 0 c ) 2 γ c g c ( ϕ 0 X 0 ) c , Y 0 c + 2 1 a 0 c ( ξ 0 c ) g c ( X 0 c , Y 0 c ) + 2 n a 0 c ( ξ 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) 2 n r 0 c ( n 1 ) a 0 c ( ξ 0 c ) + λ 0 c γ c 2 g c ( X 0 c , Y 0 c ) + da 0 c ( ϕ 0 X 0 ) c , Y 0 c + da 0 c ( ϕ 0 Y 0 ) c , X 0 c ] .
If P ¨ 0 c ( X 0 c , Y 0 c ) is skew-symmetric, then the left-hand side of (80) vanishes and we have
S 0 c ( X 0 c , Y 0 c ) = [ γ c g c ( ϕ 0 X 0 ) c , Y 0 c 1 a 0 c ( ξ 0 c ) g c ( X 0 c , Y 0 c ) n a 0 c ( ξ 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) + 1 n r 0 c ( n 1 ) a 0 c ( ξ 0 c ) + λ 0 c γ c 2 g c ( X 0 c , Y 0 c ) 1 2 da 0 c ( ϕ 0 X 0 ) c , Y 0 c + da 0 c ( ϕ 0 Y 0 ) c , X 0 c ] .
Moreover, if S 0 c ( X 0 c , Y 0 c ) is given by (81), then from (80) we obtain
P ¨ 0 c ( X 0 c , Y 0 c ) + P ¨ 0 c ( Y 0 c , X 0 c ) = 0 s . t P ¨ 0 c ( X 0 c , Y 0 c ) = P ¨ 0 c ( Y 0 c , X 0 c ) .
which gives a skew-symmetric condition of the projective Ricci tensor of ¨ c .
Theorem 7.
The necessary and sufficient condition for the projective Ricci tensor of ¨ c in an LP-Sasakian manifold ( M n , g ) endowed with QSNMC ¨ c in the tangent bundle T 0 M n to be skew-symmetric is that the Ricci tensor of the Levi-Civita connection ¨ c is given by (81).

9. Lifts of Einstein Manifold Endowed with QSNMC ¨ c in an LP-Sasakian Manifold to the Tangent Bundle

A Riemannian manifold ( M n , g ) is called an Einstein manifold with respect to Riemannian connection if
S 0 c ( X 0 c , Y 0 c ) = r 0 c n g c ( X 0 c , Y 0 c ) .
Then, the Einstein manifold with respect to QSNMC ¨ c is given by
S ¨ 0 c ( X 0 c , Y 0 c ) = r ¨ 0 c n g c ( X 0 c , Y 0 c ) .
Using (60) and (61) in (84), we have
S ¨ 0 c ( X 0 c , Y 0 c ) r ¨ 0 c n g c ( X 0 c , Y 0 c ) = S 0 c ( X 0 c , Y 0 c ) r 0 c n g c ( X 0 c , Y 0 c ) γ c g c ( ϕ 0 X 0 ) c , Y 0 c + da 0 c ( ϕ 0 Y 0 ) c , X 0 c + 1 n n + γ c 2 λ 0 c a 0 c ( ξ 0 c ) g c ( X 0 c , Y 0 c ) + n a 0 c ( ξ 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) .
If
γ c g c ( ϕ 0 X 0 ) c , Y 0 c + da 0 c X 0 c , ( ϕ 0 Y 0 ) c = 1 n n + γ c 2 λ 0 c a 0 c ( ξ 0 c ) g c ( X 0 c , Y 0 c ) + n a 0 c ( ξ 0 c ) η 0 c ( X 0 c ) η 0 v ( Y 0 c ) + η 0 v ( X 0 c ) η 0 c ( Y 0 c ) ,
then from (85), we have
S ¨ 0 c ( X 0 c , Y 0 c ) r ¨ 0 c n g c ( X 0 c , Y 0 c ) = S 0 c ( X 0 c , Y 0 c ) r 0 c n g c ( X 0 c , Y 0 c ) .
Theorem 8.
In an LP-Sasakian manifold ( M n , g ) with tangent bundle T 0 M n admitting QSNMC if Equation (86) holds, then the manifold reduces to an Einstein manifold for the Riemannian connection if and only if it is an Einstein manifold for the connection ¨ c .

10. Example

Let M be a four-dimensional manifold defined as
M = ( x 1 , x 2 , x 3 , x 4 ) R 4 ; x 4 0 ,
where R is the set of real numbers. Let x 1 , x 2 , x 3 , x 4 be given by
e 1 = x 1 x 4 x 1 , e 2 = x 2 x 4 x 2 , e 3 = x 3 x 4 x 3 , e 4 = x 4 x 4 ,
where { e 1 , e 2 , e 3 , e 4 } are a linearly independent global frame on M. Let the 1-form η 0 be given by
η 0 ( X 0 ) = g ( X 0 , e 4 ) .
The Lorentzian metric g is defined by
g ( e i , e j ) = 1 , i = j = 4 1 , i = j = 1 , 2 , 3 0 , otherwise .
Let ϕ 0 be the tensor field defined by
ϕ 0 e i = 0 , i = 4 e i , i = 1 , 2 , 3 .
Using the linearity of ϕ 0 and g, we acquire η 0 ( e 4 ) = 1 , ϕ 0 2 X 0 = X 0 + η 0 ( X 0 ) e 4 and g ( ϕ 0 X 0 , ϕ 0 Y 0 ) = g ( X 0 , Y 0 ) + η 0 ( X 0 ) η 0 ( Y 0 ) . Thus, for e 4 = ξ 0 , then the structure ( ϕ , ξ 0 , η 0 , g ) is an almost para-contact metric structure on M and M is called an almost para-contact metric manifold. In addition, M satisfies
( X 0 ϕ 0 ) Y 0 = g ( X 0 , Y 0 ) e 4 + η 0 ( Y 0 ) X 0 + 2 η 0 ( X 0 ) η 0 ( Y 0 ) e 4 .
Here, for e 4 = ξ 0 , M is an LP-Sasakian manifold. In tangent bundle T 0 M , let the complete and vertical lifts of e 1 , e 2 , e 3 , e 4 be e 1 c , e 2 c , e 3 c , e 4 c and e 1 v , e 2 v , e 3 v , e 4 v on M and let g c be the complete lift of the Lorentzian metric g on T 0 M such that
g c ( X 0 v , e 4 c ) = g c ( X 0 , e 4 ) v = η 0 ( X 0 ) v
g c ( X 0 c , e 4 c ) = g c ( X 0 , e 4 ) c = η 0 ( X 0 ) c
g c ( e 4 c , e 4 c ) = 1 , g v ( X 0 v , e 4 c ) = 0 , g v ( e 4 v , e 4 c ) = 0 ,
and so on. Let ϕ 0 c and ϕ 0 v be the complete and vertical lifts of the ( 1 , 1 ) tensor field ϕ 0 defined by
ϕ 0 v ( e 4 v ) = ϕ 0 c ( e 4 c ) = 0 ,
ϕ 0 v ( e 1 v ) = e 1 v , ϕ 0 c ( e 1 c ) = e 1 c ,
ϕ 0 v ( e 2 v ) = e 2 v , ϕ 0 c ( e 2 c ) = e 2 c ,
ϕ 0 v ( e 3 v ) = e 3 v , ϕ 0 c ( e 3 c ) = e 3 c .
Using the linearity of ϕ 0 and g, we infer that
( ϕ 0 2 X 0 ) c = X 0 c + η 0 c ( X 0 ) e 4 v + η 0 v ( X 0 ) e 4 c ,
g c ( ϕ 0 e 4 ) c , ( ϕ 0 e 3 ) c = g c ( e 4 c , e 3 c ) + η 0 c ( e 4 c ) η 0 v ( e 3 c ) + η 0 v ( e 4 c ) η 0 c ( e 3 c ) .
Thus, for e 4 = ξ 0 in (89)–(91) and (96), the structure ( ϕ 0 c , ξ 0 c , η 0 c , g c ) is an almost para-contact metric structure on T 0 M and satisfies the relation
( e 4 c c ϕ 0 c ) e 3 c = g c ( e 4 c , e 3 c ) ξ 0 v + g c ( e 4 v , e 3 c ) ξ 0 c + η 0 c ( e 3 c ) e 4 v + η 0 v ( e 3 c ) e 4 c + 2 η 0 c ( e 4 c ) η 0 c ( e 3 c ) ξ 0 v + η 0 c ( e 4 c ) η 0 v ( e 3 c ) ξ 0 c + η 0 v ( e 4 c ) η 0 c ( e 3 c ) ξ 0 c .
Thus, ( ϕ 0 c , ξ 0 c , η 0 c , g c , T 0 M ) is an LP-Sasakian manifold.

11. Conclusions

The current work investigates the lifts of a QSNMC and LP-Sasakian manifold to the tangent bundle. First, the LP-Sasakian manifold lifts to the tangent bundle are presented. The relationship between the Riemannian connection and the QSNMC from an LP-Sasakian manifold to the tangent bundle is established. An expression of the curvature tensor of the lifts of an LP-Sasakian manifold associated with QSNMC to its tangent bundle is given. The Ricci tensor and the scalar curvature lifts to the tangent bundle are provided. Some theorems regarding the properties of the lifts of the curvature tensor of an LP-Sasakian manifold endowed with QSNMC in an LP-Sasakian manifold to the tangent bundle are given.
Necessary and sufficient conditions for the symmetric and skew-symmetric properties of the lifts of the Ricci tensor are investigated. Sufficient conditions for the skew-symmetric property of the lifts of the projective Ricci tensor in the tangent bundle are provided. The lifts of the Einstein manifold associated with QSNMC on an LP-Sasakian manifold to the tangent bundle are also established. An example of the lifts of LP-Sasakian manifolds in the tangent bundle is constructed.

Author Contributions

Conceptualization, R.K., L.C., S.S., and N.B.T.; methodology, R.K., L.C., S.S., and N.B.T.; investigation, R.K., L.C., S.S., and N.B.T.; writing—original draft preparation, R.K., L.C., S.S., and N.B.T.; writing—review and editing, R.K., L.C., S.S., and N.B.T. All authors have read and agreed to the published version of the manuscript.

Funding

This project was supported by the Researchers Supporting Project number (RSP2023R413), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the reviewers and the editor for their thorough review of the article and for their insightful suggestions that helped to improve the overall quality of the paper. This project was supported by the Researchers Supporting Project number (RSP2023R413), King Saud University, Riyadh, Saudi Arabia. The second author is thankful to the Government of India, Ministry of Tribal Affairs (Scholarship Division), New Delhi, India, for financial support in the form of the National Fellowship and Scholarship for Higher Education of ST Students (202122-NFST-MIZ-00686).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
  2. Yano, K.; Kobayashi, S. Prolongations of tensor fields and connections to tangent bundles I general theory. J. Math. Soc. Jpn. 1966, 18, 194–210. [Google Scholar] [CrossRef]
  3. Tani, M. Prolongations of hypersurfaces to tangent bundles. Kodai Math. Semin. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
  4. Pandey, P.; Chaturvedi, B.B. On a Käehler manifold equipped with lift of quarter symmetric non-metric connection. Facta Univ. Ser. Math. Inform. 2019, 33, 539–546. [Google Scholar]
  5. Khan, M.N.I. Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold. Facta Univ. Ser. Math. Inform. 2020, 35, 167–178. [Google Scholar] [CrossRef]
  6. Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [Google Scholar] [CrossRef]
  7. Khan, M.N.I.; Choudhary, M.A.; Chaubey, S.K. Alternative equations for horizontal lifts of the metallic structures from manifold onto tangent bundle. J. Math. 2022, 2022, 5037620. [Google Scholar] [CrossRef]
  8. Khan, M.N.I.; De, U.C. Liftings of metallic structures to tangent bundles of order r. AIMS Math. 2022, 7, 7888–7897. [Google Scholar] [CrossRef]
  9. Khan, M.N.I.; De, U.C. Lifts of metallic structure on a cross-section. Filomat 2022, 36, 6369–6373. [Google Scholar] [CrossRef]
  10. De, U.C.; Khan, M.N.I. Kenmotsu manifolds endowed with the semi-symmetric non-metric φ-connection to its tangent bundle. Novi Sad J. Math. 2022. [Google Scholar] [CrossRef]
  11. Khan, M.N.I. Lift of semi-symmetric non-metric connection on a Kähler manifold. Afr. Mat. 2016, 27, 345–352. [Google Scholar] [CrossRef]
  12. Khan, M.N.I. Tangent bundles endowed with semi-symmetric non-metric connection on a Riemannian manifold. Facta Univ. Ser. Math. Inform. 2021, 1, 855–878. [Google Scholar]
  13. Khan, M.N.I. Complete lifts of a semi-symmetric metric p-connection on a Riemannian manifold to its tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 909–916. [Google Scholar]
  14. Khan, M.N.I. Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 265–275. [Google Scholar]
  15. Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
  16. Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
  17. Khan, M.N.I.; Jun, J. Quarter-symmetric metric connection on tangent bundles. Far East J. Math. Sci. 2017, 101, 2219–2229. [Google Scholar] [CrossRef]
  18. Kumar, R.; Colney, L.; Khan, M.N.I. Lifts of a semi-symmetric non-metric connection (SSNMC) from Statistical Manifolds to the tangent bundle. Results Nonlinear Anal. 2023, 6, 50–65. [Google Scholar]
  19. Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
  20. Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor N. S. 1975, 29, 249–254. [Google Scholar]
  21. Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor N. S. 1982, 38, 13–18. [Google Scholar]
  22. Rastogi, S.C. On quarter-symmetric metric connection. C. R. Acad. Sci. Bulg. 1978, 31, 811–814. [Google Scholar]
  23. Rastogi, S.C. On quarter-symmetric metric connection. Tensor N. S. 1987, 44, 133–141. [Google Scholar]
  24. Mishra, R.S.; Pandey, S.N. On quarter symmetric metric F-connections. Tensor N. S. 1980, 34, 1–7. [Google Scholar]
  25. Mukhopadhyay, S.; Roy, A.K.; Barua, B. Some properties of a quarter-symmetric metric connection on a Riemannian manifold. Soochow J. Math. 1991, 17, 205–211. [Google Scholar]
  26. Biswas, S.C.; De, U.C. Quarter-symmetric metric connection in an SP-Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 1997, 46, 49–56. [Google Scholar]
  27. Sengupta, J.; Biswas, B. Quarter-symmetric non-metric connection on a Sasakian manifold. Bull. Cal. Math. Soc. 2003, 95, 169–176. [Google Scholar]
  28. Singh, R.N.; Pandey, M.K. On a type of quarter-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 2007, 99, 433–444. [Google Scholar]
  29. Prakash, A.; Narain, D. On a quarter symmetric non-metric connection in an Lorentzian para-Sasakian manifolds. Int. Electron. J. Geom. 2011, 4, 129–137. [Google Scholar]
  30. Friedman, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
  31. Matsumoto, K. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci 1989, 12, 151–156. [Google Scholar]
  32. De, U.C.; Matsumoto, K.; Shaikh, A.A. On Lorentzian para-Sasakian manifolds. Rend. Del Semin. Mat. Messina 1999, 3, 149–158. [Google Scholar]
  33. Matsumoto, K.; Mihai, I. On a certain transformation in an Lorentzian para-Sasakian manifold. Tensor N. S. 1988, 47, 189–197. [Google Scholar]
  34. Chaki, M.C.; Saha, S.K. On pseudo projective Ricci-symmetric manifolds. Bulg. Phys. 1994, 24, 1–7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kumar, R.; Colney, L.; Shenawy, S.; Bin Turki, N. Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics 2023, 11, 4163. https://doi.org/10.3390/math11194163

AMA Style

Kumar R, Colney L, Shenawy S, Bin Turki N. Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics. 2023; 11(19):4163. https://doi.org/10.3390/math11194163

Chicago/Turabian Style

Kumar, Rajesh, Lalnunenga Colney, Samesh Shenawy, and Nasser Bin Turki. 2023. "Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold" Mathematics 11, no. 19: 4163. https://doi.org/10.3390/math11194163

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop