Next Article in Journal
Robotic-Arm-Based Force Control by Deep Deterministic Policy Gradient in Neurosurgical Practice
Previous Article in Journal
Numerical Modeling of Elastic Wave Propagation in Porous Soils with Vertically Inhomogeneous Fluid Contents Due to Infiltration
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Efficient Graph Network Using Total Magic Labeling and Its Applications

by
Annamalai Meenakshi
1,
Adhimoolam Kannan
2,
Robert Cep
3,* and
Muniyandy Elangovan
4,5
1
Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600062, India
2
Department of Mathematics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
3
Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
4
Department of Biosciences, Saveetha School of Engineering, Saveetha Nagar, Thandalam 602105, India
5
Department of R&D, Bond Marine Consultancy, London EC1V 2NX, UK
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(19), 4132; https://doi.org/10.3390/math11194132
Submission received: 6 August 2023 / Revised: 18 September 2023 / Accepted: 25 September 2023 / Published: 29 September 2023

Abstract

:
Cryptography is a pivotal application of graph theory in ensuring secure communication systems. Modern cryptography is deeply rooted in mathematical theory and computer science practices. It is widely recognized that encryption and decryption processes are primarily outcomes of mathematical research. Given the increasing importance of safeguarding secret information or messages from potential intruders, it is imperative to develop effective technical tools for this purpose. These intruders are often well-versed in the latest technological advancements that could breach security. To address this, our study focuses on the efficacious combinatorial technique of graph networks using efficient domination and total magic labeling. The introduction of a graph network based on total magic labeling can significantly influence the network’s performance. This research introduces a novel combinatorial method for encrypting and decrypting confidential numbers by leveraging an efficient dominant notion and labeled graph.

1. Introduction

Let   H G N V G N ,   E G n represent an undirected connected graph with   p G N vertices and   q G N edges. The degree, neighborhood and closed neighborhood of a vertex   v G N in the graph   H G N are denoted by   d e g v G N ,   N G N v G N and   N G N v G N = N G N v G N v G N , respectively. Ore [1] was the pioneer in introducing the terms “dominating set” and “dominating number” in his research. For a comprehensive understanding of domination theory-related terms, readers can refer to [2]. Numerous types of domination parameters have been introduced and explored over time. Teresa et al. [3] delved into various forms of dominations and their associated constraints. Cockayne et al. [4] delved into total dominance, a study further expanded in [5,6]. Harary and others explored double domination in [7], while studies on paired domination are documented in [8,9]. Chellali et al. [10] explored the relationship between total and paired domination in trees. Further insights on paired domination are available in [11,12,13]. Dunbar and Haynes [14] examined domination in inflated graphs, with their research continuing in [15,16,17,18]. Sampath Kumar initiated the study of equitable domination, which was later expanded upon by Swaminathan and Dharmalingam [19]. Meenakshi delved into the equitable domination of the complements of inflated graphs in [20,21].
Rosa [22] was the first to introduce graph labeling in 1967 and continued his studies on tree labeling [23]. Yeh embarked on a survey of labeling results for graphs with a distance of two. Grannell et al. [24] introduced modular gracious labeling of trees, a concept that bridges α-labeling and graceful labeling. Further studies on graceful labeling can be found in [25,26,27]. Prime labeling was initially explored by Tout, Dabboucy and Howalla [28] in 1982. Vertex equitable labeling was pioneered by Jeyanthi et al. [29], and various types of labeling were subsequently studied, as documented in [30,31,32,33,34,35,36]. It is important to note that our focus is solely on finite, simple and connected graphs.
The primary motivation behind this research is to devise novel algorithms impervious to intruders. It is essential for potential adversaries to understand the graphical network development statistics and the parameters used to decipher concealed sensitive data represented as numerical values [37,38,39]. This research introduces an encryption system comprising (i) Plain text, (ii) Encryption algorithm, (iii) Secret key, (iv) Cypher text and a decryption system consisting of (i) Cypher text, (ii) Secret Key, (iii) Decryption algorithm, (iv) Plain text. Initially, the general graph network (with modulo t) is constructed using the encryption algorithm, which leverages parameters (secret key), efficient domination and total magic labeling. The resulting graph (Cypher text) embeds hidden messages or information in the form of numerical values located in the incident links of the efficient dominating set members. To access this secret information, one must decrypt the provided algorithm. Examples are provided for the construction of graph networks with modulo 5 and modulo 7. Additionally, an adversary model has been established for this research, with discussions centered on various facets of the attacker [40,41].
Utilizing the aforementioned methodology, one can establish three distinct networks [42,43,44]: a graph network with a minimum number of edges, a graph network with a moderate number of edges and a graph network with a maximum number of edges [45,46,47]. Opting for the first network, characterized by the fewest edges, exposes the system to vulnerabilities, as adversaries can easily discern the concealed secret information, highlighting a significant system flaw [48,49,50]. In the subsequent discussion section, we will delve deeper into the proposed method, analyzing its strengths and weaknesses in comparison to existing approaches. This will provide readers with a comprehensive understanding of the method’s efficacy and potential areas of improvement. By juxtaposing our method with established techniques, we aim to elucidate its unique advantages and potential challenges, offering a holistic perspective on its applicability in real-world scenarios.

2. Preliminaries

Definition 1 
([1]). Let   H G N V G N ,   E G n be a finite, simple and connected graph. A set   S G N * V G N H G N is a dominating set if, for every vertex   v g n in   V G N but not in   S G N * , there exists at least one vertex   u G N in   S G N * such that   v g n is adjacent to   u G N . The cardinality of the smallest dominating set in   H G N is termed the domination number of   H G N and is denoted by   γ G N H G N .
Definition 2 
([33]). A set   S G N * V G N H G N is a total dominating set if every vertex   v G N in   V G N is adjacent to a vertex of   S G N . The cardinality of the smallest total dominating set is termed the total domination number and is denoted by   γ t H G N .
Definition 3 
([34]). A dominating set   S G N * V G N H G N is a paired dominating set if the induced subgraph   S N G * has a perfect matching. The smallest cardinality of a paired dominating set in   H G N is termed the paired domination number of   H G N and is denoted by   γ p r H G N .
Definition 4 
([34]). A dominating set   S G N * V G N H G N is termed an efficient dominating set (  E e f f D S ) if, for every vertex   u G N V G N , N G N u G N S G N * = 1 . Equivalently, a dominating set   S G N * is efficient if the distance between any two vertices in    S G N * is at least three.
Definition 5 
([24]). Let   G G N * = V G N * ,   E G N * be a finite simple connected graph. Labeling of   G G N * is a mapping from a set of vertices, edges or both to a set of labels. Typically, labels are positive (or non-negative), but real numbers can also be employed.
Definition 6 
([24]). A function of   V G N * G G N * to a set of labels is vertex labeling. A graph having such a function is called a vertex-labeled graph.
Definition 7 
([29]). A function of   E G N * G G N * to a set of labels is edge labeling. A graph having such a function is called an edge-labeled graph.
Definition 8 
([29]).   G G N * = V G N G G N * ,   E G N G G N * finite undirected graphs without loops and many edges with vertex set   V G N G G N * and edge set   E G N G G N * , where   l = V G N G G N * ,   m = E G N G G N * . A graph labeling   G G N * is any mapping that translates a certain set of graph elements to a specific set of positive integers. If the domain is a vertex (or edge) set, the labeling is referred to as vertex (or edge) labeling. When the domain contains both vertices and edges, the labeling is referred to as total labeling.
Definition 9 
([29]). Graph labelings can assign weights to each edge and/or vertex. If every vertex weight (or edge weight, as appropriate) has the same value, the labeling is termed magic.
Definition 10 
([27]). Let   G G N * = V G N * G G N * ,   E G N * G G N * denote a graph with the vertex set   V G N * G G N * and the edge set   E G N * G G N * . A vertex magic total labeling of   G G N * is a one-to-one mapping   g   : V G N * G G N * E G N * G G N * 1 ,   2 ,   .   .   . ,   v + e if there exists a constant c such that for every vertex x of   G G N * . f  a + b N a f a b = c . The magic constant for f is the constant c.
Definition 11 
([27]). If there is a bijection   g G N *   : V G N * G G N * E G N * G G N * 1 ,   2 ,   .   .   . ,   p + q such that there exists a constant “c” for any (l, m) in   E G N * G G N * satisfying   g G N * l + g G N * l . m + g G N * m = c , then the graph with   p G N * vertices and   q G N * edges are said to be total edge magic.

3. Graph Network Construction

Let HGN = (VGN, EGN) be a graph that has   V G N H G N = ν G N   and   E G N H G N = e G N .
Let   S G N = m 1 , m 2 , . , m t be the EeffDS members with degrees say   deg ( m 1 ) = k 1 ,   deg ( m 2 ) = k 2 , deg ( m 3 ) = k 3 , . and   deg ( m t ) = k t , where   k 1 , k 2 , k 3 , . , k t   1 .
Let   m 11 , m 12 , , m 1 k 1 m 21 , m 22 , , m 2 k 2 ;     m 31 , m 32 , , m 3 k 3 ; and   m t 1 , m t 2 , , m t k t  be the neighboring nodes of   m 1 , m 2 , m 3 , , m t , respectively,   d m 1 , m 1 k 1 = d m 2 , m 2 k 2 = d m 3 , m 3 k 3 = . = d m t , m t k t = 1 ,   1 k 1 j 1 * ;   1 k 2 j 2 * ; …;   1 k t j t . * Define  V G N H G N = m 1 , m 2 , , m t m 1 k 1 k 1 = 1 j 1 * m 2 k 2 k 2 = 1 j 2 * . m t k t k t = 1 j r * and   V G N H G N = j 1 * + j 2 * + j 3 * + . + j t * + t = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , , m t 1 k t 1 m t k t for only one   k 1 , k 2 , . , k t , where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , , 1 k t j t * .
Let   E G N min = m 1 m 1 k 1 , m 2 m 2 k 2 , , m t m t k t / 1 k 1 j 1 * ,   1 k 2 j 2 *   ,   1 k t j t *   E G N 1 . Then   E G N min = j 1 * + j 2 * + + j t * + t = v G N ( s a y ) .
Define   E G N max = ( i , j ) ;   1 i , j j 1 * + j 2 * + . + j t * + t ;   i j     m 1 m 2 , m 2 m 3 , m 3 m 4 , , m t 1 m t ,   m 1 m 2 k 2 , m 1 m 3 k 3 , , m 1 m t k t , m 2 m 3 k 3 , , m 2 m t k t , , m t m 1 k 1 , m r m 2 k 2 , , m 2 m ( t 1 ) k ( t 1 ) ,   1 k 1 j 1 * ,   1 k 2 j 2 * , .   1 k t j t * .
Then   E G N max = β ( l e t ) = 1 2 ν G N 2 + ν G N 2 t ( 1 + v G N ) ,   w h e r e   ν G N = j 1 + j 2 + + j t + t . . H′GN satisfies,   α E G N H β .

4. Encryption System of Graph Network

It consists of (i) Plain text, (ii) Encryption Algorithm, (iii) Secret Key, (iv) Cypher Text.

4.1. Plain Text

Plain text of the graph network is the secret information or secret messages in the form of numerical value using modulo t; t is a positive integer. Let the secret number be LSNasn (mod t), where asn = 0.

4.2. Encryption Algorithm: LSN ≡ asn (mod t), Where asn = 0

Input:   L S N t s n ,   L S N a s n m o d   t s n , where asn = 0.
Output: Encrypted Labeled Graph (ELG), H′GN
Start
Step 1: Divide LSN into t separations, say   L 0 , L 1 , L 2 , , L t 1 , where   L 0 0 m o d   r c n , L 1 1 m o d   r c n , L 2 2 m o d   r c n , , L t 1 t 1 m o d   t c n .
Step 2: Fix   d e g ( m 1 ) = k 1 , deg ( m 2 ) = k 2 , . , d e g ( m t ) = k t ,   where   k 1 , k 2 , , k t 1 . Let   m 11 , m 12 , , m 1 s 1 ;   m 21 , m 22 , , m 2 s 2 ;     m 31 , m 32 , , m 3 s 3 ; and   m t 1 , m t 2 , , m t s t  be the neighboring nodes of   m 1 , m 2 , m 3 , , m t , respectively,   d m 1 , m 1 k 1 = d m 2 , m 1 k 2 =    d m 3 , m 3 k 3 = . . = d m t , m t k t = 1 , 1 k 1 j 1 * ; 1 k 2 j 2 * ; …;   1 k t j t * .
Step 3: Define  V G N H G N = m 1 , m 2 , , m r m 1 k 1 k 1 = 1 j 1 * m 2 k 2 k 2 = 1 j 2 * . m t k t k t = 1 j t * and   V G N H G N = j 1 * + j 2 * + j 3 * + . + j t * + t = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , , m t 1 k t 1 m t k t for only one   k 1 , k 2 , . , k t where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , , 1 k t j t * . Let   E G N m i n    m 1 m 1 k 1 , m 2 m 2 k 2 , , m t m t k t / 1 k 1 j 1 * ,   1 k 2 j 2 *   ,   1 k t j t * E G N 1 .
Now let
  E G N max = ( i , j ) ;   1 i , j j 1 + j 2 + . + j t + t ;   i j     m 1 m 2 , m 2 m 3 , m 3 m 4 , , m t 1 m t ,   m 1 m 2 k 2 , m 1 m 3 k 3 , , m 1 m t k t , m 2 m 3 k 3 , , m 2 m t k t , , m t m 1 k 1 , m r m 2 k 2 , , m 2 m ( t 1 ) k ( t 1 ) ,   1 k 1 j 1 * ,   1 k 2 j 2 * , .   1 k t j t * . Then   E G N max = β ( l e t ) = 1 2 ν G N 2 + ν G N 2 t ( 1 + v G N ) ,   w h e r e   ν G N = j 1 + j 2 + + j t + t . H′GN satisfies,   α E G N H β .
Step 4:   z 0 = L 0 t ,    z 1 = L 1 t ,    z 2 = L 2 t , …,   z t 1 = L t 1 t .
Step 5: Split   z 0 = s 11 + s 12 + + s 1 k 1 ;   z 1 = s 21 + s 22 + + s 2 k 2 ; ,      z t 1 = s t 1 + s t 2 + + s t k t where k1, k2, …, kt   0 .
Step 6: Let   f G N : V G N ; α i * Z + defined as   f G N v = α i * being a many-to-one function. Let   g G N : E G N α j * , α j * N * , where N* = { s 11 , s 12 , , s 1 k 1 ;
s 31 , s 32 , , s 3 j 3 ; ; s t 1 , s t 2 , , s t j t and   t i * Z + } such that g G N m 1 m 1 j 1 * = s 1 k 1 ; g G N x 2 x 2 j 2 * = s 2 k 2 ; ; g G N m t m t k t = s t k t  for  1 k 1 j 1 * , 1 k 2 j 2 * , , 1 k t j t * be a many-to-one function such that   f α i * + f α j * + f α i * α j * = α k , every edge   α i * α j * E G N , α k is a constant. The constructed graph network preserves total magic labeling.
Step 7: Define
g G N m 1 m 1 k 1 = s 1 k 1 = α k f m 1 f m 1 k 1 , 1 k 1 j 1 * ;
g G N m 2 m 2 k 2 = s 2 k 2 = α k f m 2 f m 2 k 2 , 1 k 2 j 2 * ;
g G N m 3 m 3 k 3 = s 3 k 3 = α k f m 3 f m 3 k 3 , 1 k 3 j 3 * ;   ;
g G N m i * m i * k i = s i * k i = α k f m i * f m i * k i * , 1 k i * j i * ; i * = 1 , 2 , , t
g G N m 1 i * m 1 k 1 = α k f m 1 i * f m 1 k 1 , 1 i * t , 1 k 1 j 1 * ;
g G N m 2 i * m 2 k 2 = α k f m 2 i * f m 2 k 2 , 1 i * t , 1 k 2 j 2 * ;
g G N m 3 i * m 3 k 3 = α k f m 3 i * f m 3 k 3 , 1 i * t , 1 k 3 j 3 * ;   ;
g G N m t i * m t k t = α k f m t i * f m t k t , 1 i * t , 1 k t j t ;
and
i * j i * * , i * = 1 , 2 , , t
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k , 1 i * t , 1 k j 2 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ;
g G N m 3 i * m 4 k = α k f m 3 i * f m 4 k , 1 i * t , 1 k j 4 * ;   ;
g G N ( m ( t 1 ) i m t k ) = α k f ( m ( t 1 ) i ) f ( m t k ) , 1 i t ,   1 k j t ;
i * j i * * , i * = 1 , 2 , , t .
Define
g G N m 1 i * m 1 k 1 = α k f m 1 i * f m 1 k 1 , 1 i * t , 1 k 1 j 1 * ;
g G N m 2 i * m 2 k 2 = α k f m 2 i * f m 2 k 2 , 1 i * t , 1 k 2 j 2 * ; . ;
g G N m j * i * m i * k t = α k f m j * i * f m j * k j 1 i * , j * t , 1 k t j t * ; i * j t *   and   i * k t ;
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k , 1 i * t , 1 k j 2 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ; ;
g G N m t 1 i * m t k t = α k f m t 1 i * f m t k t , 1 i * t , 1 k t j t * ;
i * j i * * , j * = 1 , 2 , , t
End.

4.3. Secret Key

Find the Eeff DS of the graph network, which is   S G N = m 1 , m 2 , . , m t .

4.4. Cypher Text

Using an encryption algorithm and secret key, we have constructed the sub-graph network GN1, GN2, GN3, …, GNt , which makes the labeled graph network. There are three possible instances considered here, according to the construction. (i) Labeled graph network with a minimum number of edges say H′GN min-(t), shown in Figure 1. (It is a labeled graph network tree.) (ii) Labeled graph network with a moderate number of edges say H′GN mod-(t), shown in Figure 2. (iii) Labeled graph network with more number of edges say H′GN more-(t), shown in Figure 3.

5. Decryption System of Graph Network

(i) Cypher text, (ii) Secret key, (iii) Decryption algorithm, (iv) Plain text.
Cypher text is the labeled graph network. Using a secret key, we decrypt it, and we get back the plain text.

Decryption Algorithm

Input: ELG, H′GN
Output: LGN, the plain text.
Begin
Step 1: Find the
E e f f DS   S G N = m 1 , m 2 , . , m t
such that
N G N m 1 N G N m 2 N G N m t = φ .
Step 2:
L 0 = a 0 + t n = 1 j 1 * g G N ( m 1 m 1 n ) ,
where
a i * i * m o d   t
L 1 = a 1 + t n = 1 j 2 g G N ( m 2 m 2 n ) , ,
L t 1 = a n 1 + t n = 1 j t * g G N ( m t m t n )
Step 3:
L = n = 0 t 1 L n
End.

6. Illustration: Secret Number LSNasn (mod t), Where asn = 0 and t = 5

6.1. Graph Network for LSN ≡ asn (mod t), Where asn = 0 and t = 5

Let HGN = (VGN, EGN) be a graph that has   V G N H G N = ν G N   and    E G N H G N = e G N . Let X =  m 1 , m 2 , m 3 , m 4 , m 5 be Eeff DS members with degrees say   deg ( m 1 ) = k 1 , deg ( m 2 ) = k 2 ,   deg ( m 3 ) = k 3 ,    deg ( m 4 ) = k 4 and   deg ( m 5 ) = k 5 where   k 1 , k 2 , k 3 , k 4 , k 5 1 .
Let   m 11 , m 12 , , m 1 k 1 ;     m 21 , m 22 , , m 2 k 2 ;    m 31 , m 32 , , m 3 k 3 ;      m 41 , m 42 , , m 4 k 4 ; and   m 51 , m 52 , , m 5 k 5  be the neighboring nodes of   m 1 , m 2 , m 3 , m 4 , m 5  respectively,  d m 1 , m 1 k 1 = d m 2 , m 1 k 2 = d m 3 , m 3 k 3 = d m 4 , m 4 k 4 = d m 5 , m 5 k 5 = 1 .   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * .
D e f i n e   V G N ( H G N ) = m 1 , m 2 , m 3 , m 4 , m 5 m 1 k 1 k 1 = 1 j 1 m 2 k 2 k 2 = 1 j 2 m 3 k 3 k 3 = 1 j 3 m 4 k 4 k 4 = 1 j 4 m 5 k 5 k 5 = 1 j 5 V G N H G N = j 1 * + j 2 * + j 3 * + . + j t * + 5 = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 for only one   k 1 , k 2 , . , k 5 where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * .
Let  E G N min = m 1 m 1 k 1 , m 2 m 2 k 2 , , m 5 m 5 k 5 / 1 k 1 j 1 ,   1 k 2 j 2   ,   1 k 5 j 5   E G N 1 . Then   E G N min = j 1 + j 2 + + j 5 + 5 = v G N ( l e t ) .
Let  E G N max = ( i , j ) ;   1 i ,   j j 1 + j 2 + . + j 5 + 5 ;   i j    E , where   1 k 1 j 1 , 1 k 2 j 2 , 1 k 3 j 3 , 1 k 4 j 4 , 1 k 5 j 5 .      E G N max = ( i , j ) ;   1 i ,   j j 1 + j 2 + . + j 5 + 5 ;   i j . HGN satisfies   α G N E G N H β G N .

6.2. Encryption Algorithm

LSNasn (mod t), where asn = 0 and t = 5.
Input:   L S N t ,   L S N a s n m o d   5 , where asn = 0
Output: ELG, H′GN
Start
Step 1: Divide LSN into t divisions say   L 0 , L 1 , L 2 , L 3   and   L 4 , where   L 0 0 m o d   t , L 1 1 m o d   t , L 2 2 m o d   t , L 3 3 m o d   t , L 4 4 m o d   t .
Step 2: Fix   d e g ( m 1 ) = k 1 , d e g ( m 2 ) = k 2 , d e g ( m 3 ) = k 3 , d e g ( m 4 ) = k 4 , d e g ( m 5 ) = k 5 , where   k 1 , k 2 , k 3 , k 4 , k 5 1 . Let   m 11 , m 12 , , m 1 k 1 m 21 , m 22 , , m 2 k 2 ;   m 31 , m 32 , , m 3 k 3 ;    m 41 , m 42 , , m 4 k 4 ;      m 51 , m 52 , , m 5 k 5  be the neighboring nodes of   m 1 , m 2 , m 3 , m 4 , m 5 , respectively, and   d m 1 , m 1 k 1 = d m 2 , m 1 k 2 = d m 3 , m 3 k 3 =    d m 4 , m 4 k 4 = d m 5 , m 5 k 5 = 11 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * .
Step 3:  Define   V G N H G N = m 1 , m 2 , m 3 , m 4 , m 5 m 1 k 1 k 1 = 1 j 1 * m 2 k 2 k 2 = 1 j 2 * m 3 k 3 k 3 = 1 j 3 * m 4 k 4 k 4 = 1 j 4 * m 5 k 5 k 5 = 1 j 5 * and   V G N H G N = j 1 * + j 2 * + j 3 * + . + j t * + 5 = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 for only one   k 1 , k 2 , . , k 5 where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * .
Let
E G N min = m 1 k 1 m 2 k 2 ,   m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 / 1 k 1 j 1 ,   1 k 2 j 2 , 1 k 3 j 3 , 1 k 4 j 4 ,   1 k 5 j 5   E G N 1 .
Then  E G N min = j 1 + j 2 + + j t + 5 = v G N ( s a y ) .
Let  E G N max = ( i , j ) ;   1 i , j j 1 + j 2 + j 3 + j 4 + j 5 + 5 ;   i j     m 1 m 2 , m 2 m 3 , m 3 m 4 , . m 4 m 5 ,   m 1 m 2 k 2 , m 1 m 3 k 3 , m 1 m 4 k 4 ,   m 1 m 5 k 5 , , m 1 m t k t , m 2 m 3 k 3 , , m 2 m 5 k 5 , , m 5 m 1 k 1 , m 5 m 2 k 2 , , m 5 m 4 k 4
where  1 k 1 j 1 , 1 k 2 j 2 , 1 k 3 j 3 , 1 k 4 j 4 , 1 k 5 j 5 .
Then   E G N max = β G N ( l e t ) = 1 2 ν G N 2 + ν G N 10 ( 1 + v G N ) ,
where  ν G N = j 1 + j 2 + + j t + 5 .
H′GN satisfies   α G N E G N H G N β G N .
Step 4:   α G N E G N H G N β G N .            z 1 = L 1 5 ,            z 2 = L 2 5 ,            z 3 = L 3 5 ,          z 4 = L 4 5 .
Step 5: Split
z 0 = s 11 + s 12 + + s 1 k 1 ; z 1 = s 21 + s 22 + + s 2 j k 2 ; z 2 = s 31 + s 32 + + s 3 k 3 ; . z 3 = s 41 + s 42 + + s 4 k 4 ; z 4 = s 51 + s 52 + + s 5 k 5 .
where k1, k2, k3, k4, k5   0 .
Step 6: Let   f G N : V G N ; α i * Z + defined as   f G N v = α i * being a many-to-one function. Let   g G N : E G N α j * , α j * N G N be a many-to-one function where   N G N = { s 11 , s 12 , , s 1 k 1 ;   s 21 , s 22 , , s 2 k 2 ;     s 31 , s 32 , , s 3 k 3 ;    s 41 , s 42 , , s 4 k 4 ;     s 51 , s 52 , , s 5 k 5 } and  such   that     g G N m 1 m 1 j 1 * = s 1 j 1 * ; g G N m 3 m 3 k 3 = s 3 j 3 * ; g G N m 4 m 4 k 4 = s 4 k 4 ; g G N m 5 m 5 k 5 = s 5 k 5 for   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * ,    1 k 4 j 4 * , 1 k 5 j 5 * such that   f α i * + f α j * + f α i * α j * = α k , every edge   α i * α j * E G N , α k is a constant. The constructed graph network preserves total magic labeling.
Step 7: Define
g G N m 1 m 1 k 1 = s 1 k 1 = α k f m 1 f m 1 k 1 1 k 1 j 1 * ;
g G N m 2 m 2 k 2 = s 2 k 2 = α k f m 2 f m 2 k 2 , 1 k 2 j 1 * ;
g G N m 3 m 3 k 3 = s 3 k 3 = α k f m 3 f m 3 k 3
g G N m 4 m 4 k 4 = s 4 k 4 = α k f m 1 f m 4 k 4 , 1 k 4 j 4 * ;
g G N m 5 m 5 k 5 = s 5 k 5 = α k f m 5 f m 5 k 5 , 1 k 5 j 5 * ;
g G N m 1 i * m 1 k 1 = α k f m 1 i * f m 1 k 1 , 1 i * t , 1 k 1 j 1 * ;
g G N m 2 i * m 2 k 2 = α k f m 2 i * f m 2 k 2 , 1 i * t , 1 k 2 j 2 * ;
g G N m 3 i * m 3 k 3 = α k f m 3 i * f m 3 k 3 , 1 i * t , 1 k 3 j 3 ;
g G N m 4 i * m 4 k 4 = α k f m 4 i * f m 4 k 4 , 1 i * t , 1 k 4 j 4 * ;
g G N m 5 i * m 5 k 5 = α k f m 5 i * f m 5 k 5 ,     1 i t ,     1 k 5 j 5 ; and   i j i * , i * = 1 , 2 , , t .
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k , 1 i * t , 1 k j 2 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ;
g G N m 3 i * m 4 k = α k f m 3 i * f m 4 k , 1 i * t , 1 k j 4 * ;
g G N m 4 i * m 5 k = α k f m 4 i * f m 5 k , 1 i t ,   1 k j 5 ; i * j i * , i * = 1 , 2 , , t .
End.

6.3. Decryption Algorithm

Input: ELG, H′GN
Output: LGN.
Begin
Step 1: Find the EeffDS,   S G N = m 1 , m 2 , m 3 , m 4 , m 5 such that   N G N m 1 N G N m 2 N G N m 3 N G N m 4 N G N m 5 = φ .
Step 2:
L 0 = a 0 + t n = 1 j 1 * g ( m 1 m 1 n ) ,   where   a i * i * m o d   5 .
L 1 = a 1 + t n = 1 j 2 g G N ( m 2 m 2 n ) ,
L 2 = a 2 + t n = 1 j 2 * g G N ( m 2 m 2 n ) ,
L 3 = a 3 + t n = 1 j 2 g G N ( m 3 m 3 n ) ,
L 4 = a 4 + t n = 1 j 2 * g G N ( m 4 m 4 n ) .
Step 3:
L = n = 0 t 1 L n
End.

6.4. Secret Number LSN = 12,935 (mod t), Where   a s n = 0 and t = 5

In this illustration, we split the LSN into seven parts and assign each to the EeffDS members and the connections arising on them, so that   L = n = 0 t 1 L n where   L j * = t i * + t j = 1 l = 1 t o t k i * g G N ( m l m l j * ) and   w h e r e   t i * = L i * i * m o d   5 .

6.4.1. Encrypting LSN, 12,935

Step 1: Split LSN = 12,935 into five partitions say L0, L1, L2, L3 and L4, namely L0 = 2575 ≡ 0 (mod 5), L1 = 2581 ≡ 1 (mod 5), L2 = 2587 ≡ 2 (mod 5), L3 = 2593 ≡ 3 (mod 5) and L4 = 2599 ≡ 4 (mod 5).
Step 2: Construct the graph H′GN with   V G N H G N = 30 ,   E G N H G N   = 69 and its EeffDS, S’GN m 1 , m 2 , m 3 , m 4 , m 5 .
Step 3: Arbitrarily choose   deg ( m 1 ) = deg ( m 2 ) = k 2 , . , deg ( m 5 ) = 5 .
Let   m 11 , m 12 , m 13 . m 14 , m 15 m 21 , m 22 , m 23 , m 24 , m 25 ;     m 31 , m 32 , m 33 . m 34 , m 35 ;    m 41 , m 42 , m 43 , m 44 , m 45 ;       m 51 , m 52 , m 53 . m 54 , m 55  be the neighboring nodes of   m 1 , m 2 , m 3 , m 4 , m 5 , respectively.
Step 4: Choose   z 0 = L 0 5 = 515 ,    z 1 = L 1 5 = 516 ,    z 2 = L 2 5 = 517 .    z 3 = L 3 5 = 518 ,    z 4 = L 4 5 = 519 .
Step 5: Split   z 0 = 515 = 104 + 105 + 100 + 102 + 104 (where   s 11 = 104 , s 12 = 105 , s 13 = 100 ,    s 14 = 102 , s 15 = 104 ) . Split   z 1 = 516 = 106 + 100 + 103 + 104 + 103 (where   s 21 = 106 , s 22 = 100 , s 23 = 103 , s 24 = 104 , s 25 = 103 ) . Split   z 2 = 517 = 105 + 103 + 101 + 103 + 105 (where  s 31 = 105 , s 32 = 103 , s 33 = 101 , s 34 = 103 , s 25 = 105 ) . Split   z 3 = 518 = 100 + 102 + 104 + 106 + 106 (where  s 41 = 100 , s 42 = 102 , s 413 = 104 , s 44 = 106 , s 45 = 106 ) . Split   z 4 = 519 = 101 + 102 + 104 + 106 + 106 (where   s 51 = 101 , s 52 = 102 , s 53 = 104 ,    s 54 = 106 , s 25 = 106 ) .
Step 6: Let   f G N : V G N ; α i * Z + defined it as   f G N v G N = α i * a many-to-one function. Let  g G N : E G N α j * , α j * N G N be a many-to-one function where   N G N = { m 11 , m 12 , m 13 , m 14 , m 15 ; m 21 , m 22 , m 213 , m 24 , m 25 ; m 31 , m 32 , m 33 , m 34 , m 35 ;    m 41 , m 42 , m 43 , m 44 , m 45 ;    m 51 , m 52 , m 53 , m 54 , m 55 } and such that  g G N m 1 m 1 k 1 = s 1 k 1 ; g G N m 2 m 2 k 2 = s 2 k 2 ; g G N m 3 m 3 k 3 = s 3 k 3 ; g G N m 4 m 4 k 4 = s 4 k 4 ; g G N m 5 m 5 k 5 = s 5 k 5 for   1 k 1 5 , 1 k 2 5 , 1 k 3 5 , 1 k 4 5 , 1 k 5 5 such that   f α i * + f α j * + f α i * α j * = α k , for every edge   α i * α j * E G N , α k is a constant. The constructed graph network preserves magic labeling.
Step 7: Define
g G N m 1 m 15 = α k f m 1 f m 15 = 104 , where   α k = 1000 .
g G N m 1 m 14 = α k f m 1 f m 15 = 102 ;
g G N m 1 m 13 = α k f m 1 f m 13 = 100 ;
g G N m 1 m 12 = α k f m 1 f m 12 = 105 ;
  g G N m 1 m 11 = α k f m 1 f m 11 = 104 .
Define
g G N m 2 m 25 = α k f m 2 f m 25 = 103 ;
g G N m 2 m 24 = α k f m 2 f m 24 = 104 ;
g G N m 2 m 23 = α k f m 2 f m 23 = 103 ;
g G N m 2 m 22 = α k f m 2 f m 22 = 100 ;
g G N m 2 m 21 = α k f m 2 f m 21 = 100 .
Define
g G N m 3 m 35 = α k f m 3 f m 35 = 105 ;
g G N m 3 m 34 = α k f m 3 f m 34 = 103 ;
g G N m 3 m 33 = α k f m 3 f m 33 = 101 ;
g G N m 3 m 32 = α k f m 3 f m 32 = 103 ;
g G N m 3 m 31 = α k f m 3 f m 31 = 105 .
Define
g G N m 4 m 45 = α k f m 4 f m 45 = 105 ;
g G N m 4 m 44 = α k f m 4 f m 44 = 103 ;
g G N m 4 m 43 = α k f m 4 f m 43 = 101 ;
g G N m 4 m 42 = α k f m 4 f m 42 = 102 ;
g G N m 4 m 41 = α k f m 4 f m 41 = 100 .
Define
g G N m 5 m 55 = α k f m 5 f m 55 = 106 ;
g G N m 5 m 54 = α k f m 5 f m 54 = 106 ;
g G N m 5 m 53 = α k f m 5 f m 53 = 104 ;
g G N m 5 m 52 = α k f m 5 f m 52 = 102 ;
g G N m 5 m 51 = α k f m 5 f m 51 = 100 .
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k ,   1 i * t , 1 k j 3 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ;
g G N m 3 i * m 4 k = α k f m 3 i * f m 4 k , 1 i * t , 1 k j 4 * ;
g G N m 4 i * m 5 k = α k f m 4 i * f m 5 k 1 i * t , 1 k j 5 * .
The encrypted labeled graph network for LSNasn (mod t), where asn = 0 and t = 5. Say H′GN-(5) is shown in Figure 4.

6.4.2. DECRYPTING LSN, 12,935

Step 1: Find the EeffDS,   S G N = m 1 , m 2 , m 3 , m 4 , m 5 such that   N G N m 1 N G N m 2 N G N m 3 N G N m 4 N G N m 5 = φ .
Step 2:   L 0 = a 0 + t n = 1 j 1 * g ( m 1 m 1 n ) ,   where     a i * i * mod 5 = 5 (104 + 105 + 100 + 102 + 104) = 2575   L 1 = a 1 + t n = 1 j 2 * g G N ( m 2 m 2 n ) = 1 + 5(106 + 100 + 103 + 104 + 103) = 2581   L 2 = a 2 + t n = 1 j 3 * g G N ( m 3 m 3 n ) = 2 + 5(105 + 103 + 101 + 103 + 105) = 2587   L 3 = a 3 + t n = 1 j 4 * g G N ( m 4 m 4 n ) = 3 + 5(100 + 102 + 104 + 106 + 106) = 2593   L 4 = a 4 + t n = 1 j 5 * g G N ( m 5 m 5 n ) = 4 + 5(101 + 102 + 104 + 106 + 106) = 2599
Step 3:   L = n = 0 t 1 L n = 2575 + 2581 + 2587 + 2593 + 2599 = 12,935.

7. Illustration: Secret Number LSNasn (mod t), Where asn = 0 and t = 7

7.1. Graph Network Construction LSN ≡ asn (mod t), Where asn = 0 and t = 7

Let HGN = (VGN, EGN) be a simple graph with   V G N H G N = ν G N   and   E G N H G N = e G N . Let   S G N = m 1 , m 2 , . , m 7 be the set of nodes, which are the members of Eeff DS with degrees say   deg ( m 1 ) = k 1 , deg ( m 2 ) = k 2 ,   deg ( m 3 ) = k 3 ,        d e g ( m 4 ) = k 4 ,   d e g ( m 5 ) = k 5 ,     d e g ( m 6 ) = k 6 and   d e g ( m 7 ) = k 7 where   k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 1 . Let   m 11 , m 12 , , m 1 k 1 ;   m 21 , m 22 , , m 2 k 2 ;    m 31 , m 32 , , m 3 k 3 ;   m 41 , m 42 , , m 4 k 4 ;   m 51 , m 52 , , m 5 k 5       m 61 , m 62 , , m 6 k 6 and  m 71 , m 72 , , m 7 k 7  be the neighboring nodes of  m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , m 7 , respectively,   d m 1 , m 1 k 1 = d m 2 , m 1 k 2 = d m 3 , m 3 k 3   = d m 4 , m 4 k 4 = d m 5 , m 5 k 5 = d m 6 , m 6 k 6 = d m 7 , m 7 k 7 = 1 1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 * , 1 k 7 j 7 * .
D e f i n e   V G N ( H G N ) = m 1 , m 2 , m 3 , m 4 , m 5 m 1 k 1 k 1 = 1 j 1 m 2 k 2 k 2 = 1 j 2 m 3 k 3 k 3 = 1 j 3 m 4 k 4 k 4 = 1 j 4 m 5 k 5 k 5 = 1 j 5 m 6 k 6 k 6 = 1 j 6 m 7 k 7 k 7 = 1 j 7
V G N H G N = j 1 + j 2 + j 3 + . + j 7 + 7 = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 , m 6 k 6 m 7 k 7 for only one   k 1 , k 2 , . , k 7 where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 , 1 k 7 j 7 . Define   E G N min = m 1 m 1 k 1 , m 2 m 2 k 2 , , m 7 m 7 k 7 / 1 k 1 j 1 ,   1 k 2 j 2   , ,   1 k 7 j 7   E G N 1 .
Then   E G N min = j 1 + j 2 + + j 7 + 7 = v G N = ( s a y ) .
Define   E G N max = ( i , j ) ;   1 i , j j 1 + j 2 + . + j 7 + 7 ;   i j , where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 , 1 k 7 j 7 . Then   E GN max = β GN ( say ) = 1 2 ν GN 2 + ν GN 14 ( 1 + v GN ) ,   where   ν GN = j 1 + j 2 + + j 7 + 7 .
The edge set’s cardinality for the set of H′GN satisfies    α G N E G N H β G N .
We have presented the algorithm for creating a network and labeling its nodes and edges to encrypt the secret number LSN.

7.2. Encryption Algorithm

LSNasn (mod t), where asn = 0 and t =7.
Input:   L S N t ,   L S N a s n m o d   5 , where asn = 0.
Output: ELG, H′GN
Begin
Step 1: Divide LSN into t divisions say   L 0 , L 1 , L 2 , L 3 , L 4 , L 5   and   L 6 , where   L 0 0 ( mod   t ) , L 1 1 ( mod   t ) , L 2   2 ( mod   t ) ,   L 3   3 ( mod   t ) , L 4   4 ( mod   t ) ,   L 5 5 m o d t , L 6 6 m o d t .
Step 2: Fix   deg ( m 1 ) = k 1 , deg ( m 2 ) = k 2 ,   deg ( m 3 ) = k 3 , deg ( m 4 ) = k 4 , deg ( m 5 ) = k 5 ,     d e g ( m 5 ) = k 5 , d e g ( m 6 ) = k 6 ,   where   k 1 , k 2 , k 3 , k 4 , k 5 , k 5 , k 6 1 .
Let   m 11 , m 12 , , m 1 k 1 ;   m 21 , m 22 , , m 2 k 2 ;    m 31 , m 32 , , m 3 k 3 ;    m 41 , m 42 , , m 4 k 4 ;    m 51 , m 52 , , m 5 k 5 ;    m 61 , m 62 , , m 6 k 6 ; …  ;   m 71 , m 72 , , m 7 k 7  be the neighboring nodes of   m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , m 7 , respectively, and   d m 1 , m 1 k 1 = d m 2 , m 1 k 2 = d m 3 , m 3 k 3 = d m 4 , m 4 k 4 = d m 5 , m 5 k 5 = 1 = d m 6 , m 6 k 6 = d m 7 , m 7 k 7 = 1 1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 * , 1 k 7 j 7 * .
Step 3: Define  V G N H G N = m 1 , m 2 , m 3 , m 4 , m 5 m 1 k 1 k 1 = 1 j 1 * m 2 k 2 k 2 = 1 j 2 * m 3 k 3 k 3 = 1 j 3 * m 4 k 4 k 4 = 1 j 4 * m 5 k 5 k 5 = 1 j 5 * m 6 k 6 k 6 = 1 j 6 * m 7 k 7 k 7 = 1 j 7 * . and   V G N H G N = j 1 * + j 2 * + j 3 * + . + j 7 * + 7 = ν G N .
Let   E G N 1 = m 1 k 1 m 2 k 2 , m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 , m 5 k 5 m 6 k 6 , m 6 k 6 m 7 k 7 for only one   k 1 , k 2 , . , k 7 , where   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * ,    1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 * , 1 k 7 j 7 * .
Let   E G N min = m 1 k 1 m 2 k 2 ,   m 2 k 2 m 3 k 3 , m 3 k 3 m 4 k 4 , m 4 k 4 m 5 k 5 , m 5 k 5 m 6 k 6 , m 6 k 6 m 7 k 7 / 1 k 1 j 1 ,   1 k 2 j 2 , 1 k 3 j 3 , 1 k 4 j 4 ,   1 k 5 j 5 , 1 k 6 j 6 ,   1 k 7 j 7   E G N 1 .
Then   E G N min = j 1 + j 2 + + j 7 + 7 = v G N .
Let   E G N max = ( i , j ) ;   1 i , j j 1 + j 2 + j 3 + j 4 + j 5 + j 6 + j 7 + 7 ;   i j   m 1 m 2 , m 2 m 3 , m 3 m 4 , m 4 m 5 ,   m 5 m 6 , m 6 m 7 ,   m 1 m 2 k 2 , m 1 m 3 k 3 , m 1 m 4 k 4 ,   m 1 m 5 k 5 , , m 1 m 7 k 7 , m 2 m 3 k 3 , , m 2 m 7 k 7 , , m 7 m 1 k 1 , m 7 m 2 k 2 , , m 7 m 6 k 6 where   1     k 1     j 1 * ,   1     k 2     j 2 * ,   1     k 3     j 3 * ,   1     k 4     j 4 * ,   1     k 5     j 5 * ,   1   k 6     j 6 * ,   1     k 7     j 7 * . Then   E G N m a x | | G N . . ν G N . + ν G N 14 . + v G N , where   ν G N = j 1 * + j 2 * + + j 7 * + 7 .
HGN satisfies   α G N E G N H G N β G N .
Step 4:   z 0 = L 0 7 ,    z 1 = L 1 7 ,     z 2 = L 2 7 ,   z 3 = L 3 7 ,        z 4 = L 4 7 ,    z 5 = L 5 7 ,      z 6 = L 6 7 .
Step 5: Split
z 0 = s 11 + s 12 + + s 1 k 1 ;
z 1 = s 21 + s 22 + + s 2 j * k 2 ;
z 2 = s 31 + s 32 + + s 3 k 3 ;
z 3 = s 41 + s 42 + + s 4 k 4 ;
z 4 = s 51 + s 52 + + s 5 k 5 ;
z 5 = s 61 + s 62 + + s 6 k 6 ;
z 6 = s 71 + s 72 + + s 7 k 7 .
where k1, k2, k3, k4, k5, k6, k7   0 .
Step 6: Let   f G N : V G N ; α i * Z + defined as   f G N v = α i * being a many-to-one function. Let   g G N : E G N α j * , α j * N G N be a many-to-one function where  N G N = { s 11 , s 12 , , s 1 k 1 ;   s 21 , s 22 , , s 2 k 2 ;    s 31 , s 32 , , s 3 k 3 ;    s 41 , s 42 , , s 4 k 4 ;    s 51 , s 52 , , s 5 k 5 ,    s 61 , s 62 , , s 6 k 6 ;    s 71 , s 72 , , s 7 k 7 } and such that  g G N m 1 m 1 j 1 * = s 1 j 1 * ; g G N m 3 m 3 k 3 = s 3 j 3 * ; g G N m 4 m 4 k 4 = s 4 k 4 ; g G N m 5 m 5 k 5 = s 5 k 5 ; g G N m 6 m 6 k 6 = s 6 k 64 ; g G N m 7 m 7 k 7 = s 7 k 7 for   1 k 1 j 1 * , 1 k 2 j 2 * , 1 k 3 j 3 * , 1 k 4 j 4 * , 1 k 5 j 5 * , 1 k 6 j 6 * , 1 k 7 j 7 * such that   f α i * + f α j * + f α i * α j * = α k for every edge   α i * α j * E G N , α k is a constant. The constructed graph network preserves total magic labeling.
Step 7: Define
g G N m 1 m 1 k 1 = s 1 k 1 = α k f m 1 f m 1 k 1 , 1 k 1 j 1 * ;
g G N m 2 m 2 k 2 = s 2 k 2 = α k f m 2 f m 2 k 2 , 1 k 2 j 2 * ;
g G N m 3 m 3 k 3 = s 3 k 3 = α k f m 3 f m 3 k 3 , 1 k 3 j 3 * ;
g G N m 4 m 4 k 4 = s 4 k 4 = α k f m 1 f m 4 k 4 , 1 k 4 j 4 * ;
g G N m 5 m 5 k 5 = s 5 k 5 = α k f m 5 f m 5 k 5 , 1 k 5 j 5 * ;
g G N m 1 i * m 1 k 1 = α k f m 1 i * f m 1 k 1 , 1 i * t , 1 k 1 j 1 * ;
g G N m 2 i * m 2 k 2 = α k f m 2 i * f m 2 k 2 , 1 i * t , 1 k 2 j 2 * ;
g G N m 3 i * m 3 k 3 = α k f m 3 i * f m 3 k 3 , 1 i * t , 1 k 3 j 3 * ;
g G N m 4 i * m 4 k 4 = α k f m 4 i * f m 4 k 4 , 1 i * t , 1 k 4 j 4 * ;
g G N m 5 i * m 5 k 5 = α k f m 5 i * f m 5 k 5 , 1 i * t , 1 k 5 j 5 * ;
g G N m 6 i * m 6 k 6 = α k f m 6 i * f m 6 k 6 , 1 i * t , 1 k 6 j 6 * ;
g G N m 7 i * m 7 k 7 = α k f m 7 i * f m 7 k 7 , 1 i * t , 1 k 7 j 7 * , and   i * j i * , i * = 1 , 2 , , t
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k , 1 i * t , 1 k j 2 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ;
g G N m 3 i * m 4 k = α k f m 3 i * f m 4 k , 1 i * t , 1 k j 4 * ;
g G N m 4 i * m 5 k = α k f m 4 i * f m 5 k , 1 i t ,   1 k j 5 ; i * j i * , i * = 1 , 2 , , t .
g G N m 5 i * m 6 k = α k f m 5 i * f m 6 k , 1 i * t , 1 k j 6 * ;
g G N m 6 i * m 7 k = α k f m 6 i * f m 7 k , 1 i t ,   1 k j 7 ;
i * j i * * , i * = 1 , 2 , , t
End.

7.3. Decryption Algorithm

Input: ELG, H′GN
Output: LGN
Begin
Step 1: Find the Eeff DS  S G N = m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , m 7 such that  N G N m 1 N G N m 2 N G N m 3 N G N m 4 N G N m 5 N G N m 6 N G N m 7 = φ .
Step 2:   L 0 = a 0 + t n = 1 j 1 * g ( m 1 m 1 n )   where   a i * i * mod   7
L 1 = a 1 + t n = 1 j 2 g G N ( m 2 m 2 n ) ,
L 2 = a 2 + t n = 1 j 3 * g G N ( m 3 m 3 n ) ,
L 3 = a 3 + t n = 1 j 4 g G N ( m 4 m 4 n ) ,
    L 4 = a 4 + t n = 1 j 5 * g G N ( m 5 m 5 n ) ,
L 5 = a 5 + t n = 1 j 6 g G N ( m 6 m 6 n ) ,
L 6 = a 6 + t n = 1 j 7 * g G N ( m 7 m 7 n ) .
Step 3:
  L = n = 0 t 1 L n
End.

7.4. ILLUSTRATION: Secret Number LSN = 35497 ≡ asn (mod t), Where asn = 0 and t = 7

7.4.1. Graph Network Construction for LSN ≡ asn (mod t), Where asn = 0 and t = 7

In this example, we divide LSN into seven parts and allocate each to the Eeff DS members and the connections arising on them, so that   L = n = 0 t 1 L n where   L j * = t i * + t j = 1 l = 1 t o t k i * g G N ( m l m l j * ) and    where   t i * = L i * i * m o d   7 .

7.4.2. ENCRYPTING LSN, 35,497

To encrypt the confidential number 35,497 which is a multiple of 7, let LSN = 35,497 ≡ asn (mod t), where asn = 0 and t = 7.
Step 1: Split LSN = 35,497 into seven partitions say L0, L1, L2, L3, L4, L5 and L6 namely L0 = 5047 ≡ 0 (mod 7), L1 = 5055 ≡ 1 (mod 7), L2 = 5063 ≡ 2 (mod 7), L3 = 5071 ≡ 3 (mod 7) and L4 = 5079 ≡ 4 (mod 7), L5 = 5087 ≡ 5(mod 7), L6 = 5095 ≡ 6 (mod 7).
Step 2: Arbitrarily choose deg(m1) = 4, deg(m2) = 5, deg(m3) = 6, deg(m4) = 6, deg(m5) = 5, deg(m4) = 7 and deg(m5) = 7. Let   m 11 , m 12 , m 13 . m 14 , m 15 ;   m 21 , m 22 , m 23 , m 24 , m 25 ;    m 31 , m 32 , m 33 . m 34 , m 35 ;    m 41 , m 42 , m 43 . m 44 , m 45 ;    m 51 , m 52 , m 53 . m 54 , m 55 ;     m 61 , m 62 , , m 6 k 6 ; …  ; m 71 , m 72 , , m 7 k 7  be the neighboring nodes of   m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , m 7 , respectively.
Step 3: Construct the graph H′GN with   V G N H G N = 47 and   E G N H G N = 81 and its Eeff DS, S’GN = {m1, m2, m3, m4, m5, m6, m7}.
Step 4:   z 0 = L 0 7 = 721 ,   z 1 = L 1 7 = 722 ,        z 2 = L 2 7 = 723 ,    z 3 = L 3 7 = 724 ,        z 4 = L 4 7 = 725 ,   z 5 = L 5 7 = 726 ,    z 6 = L 6 7 = 727 .
Step 5: Split   z 0 = 721 = 125 + 188 + 164 + 244 (where   s 11 = 125 , s 12 = 188 , s 13 = 164 , s 14 = 244 ) . Split   z 1 = 722 = 195 + 213 + 103 + 102 + 109 (where   s 21 = 195 , s 22 = 213 , s 23 = 103 , s 24 = 102 , s 25 = 109 ) .
Split   z 2 = 723 = 176 + 104 + 135 + 102 + 100 + 106 (where   s 31 = 176 , s 32 = 104 , s 33 = 135 , s 34 = 102 , s 25 = 100 , s 25 = 106 ) .
Split   z 3 = 724 = 105 + 104 + 103 + 102 + 160 + 150 (where   s 41 = 105 , s 42 = 104 , s 43 = 103 , s 44 = 102 , s 45 = 160 ; s 46 = 150 ) .
Split   z 4 = 725 = 105 + 144 + 153 + 148 + 175 (where   s 51 = 105 , s 52 = 144 , s 53 = 153 , s 54 = 148 , s 25 = 175 ) .
  z 5 = 726 = 106 + 105 + 104 + 103 + 102 + 100 + 106 (where   s 61 = 106 , s 62 = 105 , s 63 = 104 , s 64 = 103 , s 65 = 102 , s 66 = 100 , s 67 = 106 ) .
  z 6 = 727 = 103 + 102 + 101 + 106 + 106 + 105 + 104 (where   s 71 = 103 , s 72 = 102 , s 73 = 101 , s 74 = 106 , s 75 = 106 , s 76 = 105 , s 77 = 104 ) .
Step 6: Let   f G N : V G N ; α i * Z + defined as   f G N v G N = α i * being a many-to-one function. Let   g G N : E G N α j * , α j * N G N be a many-to-one function where   N G N = { m 11 , m 12 , , m 14 ;   m 21 , m 22 , , m 25 ;    m 31 , m 32 , , m 36 ;    m 41 , m 42 , , m 46 ;    m 51 , m 52 , , m 55 m 61 , m 62 , , m 67 and   m 71 , m 72 , , m 77 } such that   g G N m 1 m 1 k 1 = s 1 k 1 ; g G N m 2 m 2 k 2 = s 2 k 2 ; g G N m 3 m 3 k 3 = s 3 k 3 ; g G N m 4 m 4 k 4 = s 4 k 4 ; g G N m 5 m 5 k 5 = s 5 k 5 ; g G N m 6 m 6 k 6 = s 6 k 64 ; g G N m 7 m 7 k 7 = s 7 k 7 for   1 k 1 j 1 , 1 k 2 j 2 , 1 k 3 j 3 , 1 k 4 j 4 , 1 k 5 j 5 , 1 k 6 j 6 * , 1 k 7 j 7 * such that   f α i * + f α j * + f α i * α j * = α k , for every edge   α i * α j * E G N , α k is a constant. The constructed graph network preserves total magic labeling.
Step 7: Define
g G N m 1 m 14 = α k f m 1 f m 14 = 244   where   α k = 1200 ;
g G N m 1 m 13 = α k f m 1 f m 13 = 164 ;
g G N m 1 m 12 = α k f m 1 f m 12 = 188 ;
g G N m 1 m 11 = α k f m 1 f m 11 = 125 .
Define
g G N m 2 m 25 = α k f m 2 f m 25 = 109 ;
g G N m 2 m 24 = α k f m 2 f m 24 = 102 ;
g G N m 2 m 23 = α k f m 2 f m 23 = 103 ;
g G N m 2 m 22 = α k f m 2 f m 22 = 213 ;
g G N m 2 m 21 = α k f m 2 f m 21 = 195 .
Define
g G N m 3 m 36 = α k f m 3 f m 36 = 106 ;
g G N m 3 m 35 = α k f m 3 f m 35 = 100 ;
g G N m 3 m 34 = α k f m 3 f m 34 = 102 ;
g G N m 3 m 33 = α k f m 3 f m 33 = 135 ;
g G N m 3 m 32 = α k f m 3 f m 32 = 104 ;
g G N m 3 m 31 = α k f m 3 f m 31 = 176 .
Define
g G N m 4 m 46 = α k f m 4 f m 46 = 150 ;
g G N m 4 m 45 = α k f m 4 f m 45 = 160 ;
g G N m 4 m 44 = α k f m 4 f m 44 = 102 ;
g G N m 4 m 43 = α k f m 4 f m 43 = 103 ;
g G N m 4 m 42 = α k f m 4 f m 42 = 104 ;
g G N m 4 m 41 = α k f m 4 f m 41 = 105 .
Define
g G N m 5 m 55 = α k f m 5 f m 55 = 175 ;
g G N m 5 m 54 = α k f m 5 f m 54 = 148 ;
g G N m 5 m 53 = α k f m 5 f m 53 = 153 ;
g G N m 5 m 52 = α k f m 5 f m 52 = 144 ;
g G N m 5 m 51 = α k f m 5 f m 51 = 105 .
Define
g G N m 6 m 67 = α k f m 6 f m 67 = 106 ;
g G N m 6 m 66 = α k f m 6 f m 66 = 100 ;
g G N m 6 m 65 = α k f m 6 f m 65 = 102 ;
g G N m 6 m 64 = α k f m 6 f m 64 = 103 ;
g G N m 6 m 63 = α k f m 6 f m 63 = 104 ;
g G N m 6 m 62 = α k f m 6 f m 62 = 105 ;
g G N m 6 m 61 = α k f m 6 f m 61 = 106 .
Define
g G N m 7 m 77 = α k f m 7 f m 77 = 104 ;
g G N m 7 m 76 = α k f m 7 f m 76 = 105 ;
g G N m 7 m 75 = α k f m 7 f m 75 = 106 ;
g G N m 7 m 74 = α k f m 7 f m 74 = 106 ;
g G N m 7 m 73 = α k f m 7 f m 73 = 101 ;
g G N m 7 m 72 = α k f m 7 f m 72 = 102 ;
g G N m 7 m 71 = α k f m 7 f m 71 = 103 .
g G N m 1 i * m 2 k = α k f m 1 i * f m 2 k , 1 i * t , 1 k j 2 * ;
g G N m 2 i * m 3 k = α k f m 2 i * f m 3 k , 1 i * t , 1 k j 3 * ;
g G N m 3 i * m 4 k = α k f m 3 i * f m 4 k , 1 i * t , 1 k j 4 * ;
g G N m 4 i * m 5 k = α k f m 4 i * f m 5 k , 1 i * t , 1 k j 5 * ;
g G N m 5 i m 6 k = α k f m 5 i f m 6 k , 1 i * t , 1 k j 6 * ;
g G N m 6 i * m 7 k = α k f m 6 i * f m 7 k , 1 i * t , 1 k j 7 * .
The ELG network for LSNasn (mod t), where asn = 0 and t = 7. Say H′GN-(7) is shown in Figure 5.

7.4.3. DECRYPTING LSN, 12,935

Step 1: Find the Eeff DS,   S G N = m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , m 7 such that  N G N m 1 N G N m 2 N G N m 3 N G N m 4 N G N m 5 N G N m 6 N G N m 7 = φ
Step 2:
L 0 = a 0 + t n = 1 j 1 * g ( m 1 m 1 n )   where   a i * i * m o d   7   =   7 ( 125   +   188   +   164   +   244 )   =   5047
L 1 = a 1 + t n = 1 j 2 * g G N ( m 2 m 2 n ) = 1 + 7 195 + 213 + 103 + 102 + 109 = 5055
L 2 = a 2 + t n = 1 j 3 * g G N ( m 3 m 3 n ) = 2 + 7 176 + 104 + 135 + 102 + 100 + 106 = 5063
L 3 = a 3 + t n = 1 j 4 g G N ( m 4 m 4 n ) =   3 + 7 ( 105 + 104 + 103 + 102 + 160 + 150 ) = 5071
L 4 = a 4 + t n = 1 j 5 * g G N ( m 5 m 5 n ) = 4 + 7 105 + 144 + 153 + 148 + 175 = 5079
L 5 = a 5 + t n = 1 j 6 g G N ( m 6 m 6 n )   =   5 + 7 ( 106 + 105 + 104 + 103 + 102 + 100 + 106 ) = 5087
L 6 = a 6 + t n = 1 j 7 * g G N ( m 7 m 7 n ) = 6 + 7 103 + 102 + 101 + 106 + 106 + 105 + 104 = 5095 .
Step 3:   L = n = 0 t 1 L n = 5047 + 5055 + 5063 + 5071 + 5079 + 5087 + 5095 = 35,497.

8. Adversary Model

In the realms of cybersecurity, cryptography and security analysis, an adversary model—often termed a threat model—is a conceptual framework designed to characterize and delineate potential attackers or threats that a system, protocol or application might face. This model assists in identifying and understanding the myriad strategies an adversary might employ to compromise a system’s security [51,52,53].
Capabilities: This aspect pertains to the abilities of an attacker in terms of resources, knowledge and access. The spectrum of capabilities can span from rudimentary attacks by novices, often called “script kiddies”, to intricate assaults orchestrated by well-funded and adept hackers. Our cryptosystem, grounded in a network construction based on modulo t, total labeling and efficient domination, hinges on knowledge-based resources. If an intruder is privy to this information, they can evolve into proficient attackers of this system.
Goal: This dimension focuses on the objectives of the attacker. Potential aims might encompass data theft, service disruption, user impersonation or other malicious endeavors. The primary objective of adversaries targeting this cryptosystem is to decipher the concealed information.
Knowledge: This refers to the attacker’s understanding of the system, protocol or technology they aim to exploit. Such knowledge encompasses awareness of potential weaknesses, entry points and vulnerabilities. In the context of our cryptosystem, knowledge is anchored in two pivotal parameters: efficient domination and total labeling. If the constructed network exhibits minimal connectivity, attackers can more readily pinpoint the nodes associated with efficient domination.
Constraints: These represent the limitations or challenges an attacker might encounter. A quintessential constraint might be the attacker’s finite processing power or a narrow window of opportunity to strike. Within our cryptosystem, certain constraints are inherent, such as the necessity to select an appropriate secret number aligned with modulo t, partitioning this secret number and utilizing the partitions to assign weights to the network’s edges.
Resources: This facet delves into the arsenal at the attacker’s disposal, which could encompass financial resources, computational prowess, network infrastructure and access to specialized tools or software. In the context of our cryptosystem, the network’s construction hinges on the analysis of a secret number. An astute attacker might deduce that the concealed information is encapsulated as a numerical value.

9. Conclusions

We have presented a combinatorial approach to ascertain the secret number as manifested in the efficiently constructed graph network. The principles of total magic labeling and efficient domination are pivotal in crafting such an efficient graph network. The key to this system lies in identifying the most efficient and dominant set, termed   E e f f D S . By assigning repeated values of   m i j and considering the maximum number of edges present in the constructed   E e f f D S , the network’s complexity is heightened, making it more challenging to decode.

Author Contributions

Conceptualization, A.M. and A.K.; Data curation, A.M. and M.E. Formal analysis, A.M. and R.C.; Investigation, A.M., R.C. and A.K.; Methodology, A.M. and M.E. Supervision, A.M., M.E. and R.C.; Visualization, A.M. and A.K. Writing—original draft, R.C., A.M. and A.K. Writing—review and editing, A.M., A.K. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the project SP2023/088 Application of Machine and Process Control Advanced Methods supported by the Ministry of Education, Youth and Sports, Czech Republic.

Data Availability Statement

The data availability of this research work is based on the published research article of the relevant topics.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ore, O. Theory of Graphs; American Mathematical Society Colloquium Publications: Providence, RI, USA, 1962. [Google Scholar]
  2. Bondy Murthy, J.A. Graph Theory with Applications; Elsevier Science Publishing Co., Inc.: New York, NY, USA, 1976. [Google Scholar]
  3. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Decker: New York, NY, USA, 1998. [Google Scholar]
  4. Cockayne, E.J.; Dawes, R.M.; Hedetniemi, S.T. Total domination in graphs. Networks 1980, 10, 211–219. [Google Scholar] [CrossRef]
  5. Bujtás, C. Domination number of graphs with minimum degree five. Discuss. Math. Graph Theory 2021, 41, 763–777. [Google Scholar] [CrossRef]
  6. Favaron, O.; Kabanov, V.; Puech, J. The ratio of three domination parameters in some classes of claw-free graphs. J. Comb. Math. Comb. Comput. 1999, 31, 151–160. [Google Scholar]
  7. Harary, F.; Haynes, T.W. Double domination in Graphs. Ars Comb. 2000, 55, 201–213. [Google Scholar]
  8. Gorzkowska, A.; Henning, M.A.; Kleszcz, E. Monika Pilśniak, Paired Domination in Trees. Graphs Comb. 2022, 38, 129. [Google Scholar] [CrossRef]
  9. Henning, M.A.; Pilśniak, M.; Tumidajewicz, E. Bounds on the paired domination number of graphs with minimum degree at least three. Appl. Math. Comput. 2022, 417, 12782. [Google Scholar] [CrossRef]
  10. Chellali, M.; Haynes, T.W. Total and paired domination numbers of a tree. AKCE Int. J. Graphs Comb. 2004, 1, 69–75. [Google Scholar]
  11. Edwards, M. Critically Concepts for Paired Domination in Graphs. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2006. [Google Scholar]
  12. Brigham, R.C.; Chinn, P.Z.; Dutton, R.D. Vertex domination-critical graphs. Networks 1988, 18, 173–179. [Google Scholar] [CrossRef]
  13. Hou, X.; Edwards, M. Paired Domination Vertex Critical Graphs. Graphs Comb. 2008, 24, 453–459. [Google Scholar] [CrossRef]
  14. Dunbar, J.E.; Haynes, T.W. Domination in inflated graphs. Congr. Numer. 1996, 118, 143–154. [Google Scholar]
  15. Favaron, O. Irredundance in inflated graphs. J. Graph Theory 1998, 28, 97–104. [Google Scholar] [CrossRef]
  16. Puech, J. The lower irredundance and domination parameters are equal for inflated trees. J. Comb. Math. Comb. Comput. 2000, 33, 117–127. [Google Scholar]
  17. Puech, J. Lower Domination Parameters in Inflated Trees; Research Report 97-57; Mathematical Department, UniversitNe Paris-Sud: Paris, France, 1997. [Google Scholar]
  18. Henning, M.A.; Kazemi, A.P. Total domination in inflated graphs. Discret. Appl. Math. 2012, 160, 164–169. [Google Scholar] [CrossRef]
  19. Swaminathan, V.; Dharmalingam, K.M. Degree equitable domination on graphs. Kragujev. J. Math. 2011, 35, 191–197. [Google Scholar]
  20. Meenakshi, A. Equitable domination of complement of inflated graph. AIP Conf. Proc. 2019, 2112, 020079–1–6. [Google Scholar]
  21. Kumaran, N.; Meenakshi, A.; Mahdal, M.; Prakash, J.U.; Guras, R. Application of Fuzzy Network Using Efficient Domination. Mathematics 2023, 11, 2258. [Google Scholar] [CrossRef]
  22. Rosa, A. On Certain Valuations of the Vertices of a Graph, Theory of Graphs; Internat. Symposium: Rome, Italy, 1967. [Google Scholar]
  23. Hung, C.; Kotzig, A.; Rosa, A. Furter results on tree labellings. Util. Math. 1982, 21, 31–48. [Google Scholar]
  24. Grannell, M.J.; Griggs, T.S.; Holroyd, F.C. Modular gracious labellings of trees. Discret. Math. 2001, 231, 199–219. [Google Scholar] [CrossRef]
  25. Slater, P.J. On k-graceful graphs. In Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, USA, 15–18 February 1982; Volume 53, p. 57. [Google Scholar]
  26. Lo, S.P. On edge-graceful labelings of graphs. Congr. Numer. 1985, 50, 231–241. [Google Scholar]
  27. MacDougall, J.A.; Miller, M.; Wallis, W.D. Vertex-magic total labelings of graphs. Util. Math. 2002, 61, 3–21. [Google Scholar]
  28. Tout, A.; Dabboucy, A.N.; Howalla, K. Prime labeling of graphs. Nat. Acad. Sci. Lett. 1982, 11, 365–368. [Google Scholar]
  29. Jeyanthi, P.; Maheswari, A. Some results on vertex equitable labeling. Open J. Discret. Math. 2012, 2012, 18867. [Google Scholar] [CrossRef]
  30. Zhang, X.; Ye, C.; Zhang, S.; Yao, B. Graph Colorings and Labelings Having Multiple Restrictive Conditions in Topological Coding. Mathematics 2022, 10, 1592. [Google Scholar] [CrossRef]
  31. Zhang, X.; Ibrahim, M.; Bokhary, S.A.U.H.; Siddiqui, M.K. Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs. Mathematics 2018, 6, 142. [Google Scholar] [CrossRef]
  32. Hao, J.; Gong, Y.; Sun, J.; Tan, L. Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs. Mathematics 2019, 7, 690. [Google Scholar] [CrossRef]
  33. Allan, R.B.; Laskar, R.; Hedetniemi, S. A note on total domination. Discret. Math. 1984, 49, 7–13. [Google Scholar] [CrossRef]
  34. Liu, X.; Shi, T.; Zhou, G.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Emotion classification for short texts: An improved multi-label method. Humanit. Soc. Sci. Commun. 2023, 10, 306. [Google Scholar] [CrossRef]
  35. Liu, X.; Zhou, G.; Kong, M.; Yin, Z.; Li, X.; Yin, L.; Zheng, W. Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method. Systems 2023, 11, 390. [Google Scholar] [CrossRef]
  36. Meenakshi, A.; Mythreyi, O.; Bramila, M.; Kannan, A.; Senbagamalar, J. Application of neutrosophic optimal network using operations. J. Intell. Fuzzy Syst. 2023, 45, 421–433. [Google Scholar] [CrossRef]
  37. Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE Trans. Netw. Serv. Manag. 2016, 13, 349–361. [Google Scholar] [CrossRef]
  38. Li, B.; Zhou, X.; Ning, Z.; Guan, X.; Yiu, K.C. Dynamic event-triggered security control for networked control systems with cyber-attacks: A model predictive control approach. Inf. Sci. 2022, 612, 384–398. [Google Scholar] [CrossRef]
  39. Zhuang, Y.; Jiang, N.; Xu, Y.; Xiangjie, K.; Kong, X. Progressive Distributed and Parallel Similarity Retrieval of Large CT Image Sequences in Mobile Telemedicine Networks. Wirel. Commun. Mob. Comput. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
  40. Idrees, M.S.; Roudier, Y.; Apvrille, L. Model the system from adversary viewpoint: Threats identification and modeling. Adv. Intrusion Prev. Workshop 2014, 165, 45–58. [Google Scholar]
  41. Zhang, J.; Peng, S.; Gao, Y.; Zhang, Z.; Hong, Q. APMSA: Adversarial Perturbation Against Model Stealing Attacks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1667–1679. [Google Scholar] [CrossRef]
  42. Jin, H.; Wang, Z.; Wu, L. Global dynamics of a three-species spatial food chain model. J. Differ. Equ. 2022, 333, 144–183. [Google Scholar] [CrossRef]
  43. Liu, P.; Shi, J.; Wang, Z.-A. Pattern formation of the attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst.-Ser. B 2013, 18, 2597–2625. [Google Scholar] [CrossRef]
  44. Jin, H.Y.; Wang, Z.A. Global stabilization of the full attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst.-Ser. A 2020, 40, 3509–3527. [Google Scholar] [CrossRef]
  45. Wang, F.; Wang, H.; Zhou, X.; Fu, R. A Driving Fatigue Feature Detection Method Based on Multifractal Theory. IEEE Sens. J. 2022, 22, 19046–19059. [Google Scholar] [CrossRef]
  46. Yang, S.; Li, Q.; Li, W.; Li, X.; Liu, A. Dual-Level Representation Enhancement on Characteristic and Context for Image-Text Retrieval. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 8037–8050. [Google Scholar] [CrossRef]
  47. Liu, A.-A.; Zhai, Y.; Xu, N.; Nie, W.; Li, W.; Zhang, Y. Region-Aware Image Captioning via Interaction Learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 3685–3696. [Google Scholar] [CrossRef]
  48. Qiao, F.; Li, Z.; Kong, Y. A Privacy-Aware and Incremental Defense Method Against GAN-Based Poisoning Attack. IEEE Trans. Comput. Soc. Syst. 2023. [Google Scholar] [CrossRef]
  49. Jiang, H.; Wang, M.; Zhao, P.; Xiao, Z.; Dustdar, S. A Utility-Aware General Framework with Quantifiable Privacy Preservation for Destination Prediction in LBSs. IEEE/ACM Trans. Netw. 2021, 29, 2228–2241. [Google Scholar] [CrossRef]
  50. Ma, J.; Hu, J. Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika 2022, 58, 426–439. [Google Scholar] [CrossRef]
  51. Tan, J.; Jin, H.; Hu, H.; Hu, R.; Zhang, H.; Zhang, H. WF-MTD: Evolutionary Decision Method for Moving Target Defense Based on Wright-Fisher Process. IEEE Trans. Dependable Secur. Comput. 2022. [Google Scholar] [CrossRef]
  52. Lu, S.; Liu, M.; Yin, L.; Yin, Z.; Liu, X.; Zheng, W. The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Comput. Sci. 2023, 9, e1400. [Google Scholar] [CrossRef]
  53. Lu, S.; Ding, Y.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Multiscale Feature Extraction and Fusion of Image and Text in VQA. Int. J. Comput. Intell. Syst. 2023, 16, 54. [Google Scholar] [CrossRef]
Figure 1. H′GN min-(t).
Figure 1. H′GN min-(t).
Mathematics 11 04132 g001
Figure 2. H′GN mod-(t).
Figure 2. H′GN mod-(t).
Mathematics 11 04132 g002
Figure 3. H′GN more-(t).
Figure 3. H′GN more-(t).
Mathematics 11 04132 g003
Figure 4. H′GN-(5).
Figure 4. H′GN-(5).
Mathematics 11 04132 g004
Figure 5. H′GN-(7).
Figure 5. H′GN-(7).
Mathematics 11 04132 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Meenakshi, A.; Kannan, A.; Cep, R.; Elangovan, M. Efficient Graph Network Using Total Magic Labeling and Its Applications. Mathematics 2023, 11, 4132. https://doi.org/10.3390/math11194132

AMA Style

Meenakshi A, Kannan A, Cep R, Elangovan M. Efficient Graph Network Using Total Magic Labeling and Its Applications. Mathematics. 2023; 11(19):4132. https://doi.org/10.3390/math11194132

Chicago/Turabian Style

Meenakshi, Annamalai, Adhimoolam Kannan, Robert Cep, and Muniyandy Elangovan. 2023. "Efficient Graph Network Using Total Magic Labeling and Its Applications" Mathematics 11, no. 19: 4132. https://doi.org/10.3390/math11194132

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop