Determination of the Impulsive Dirac Systems from a Set of Eigenvalues
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amirov, R.K. On a system of Dirac differential equations with discontinuity conditions inside an interval. Ukr. Math. J. 2005, 57, 712–727. [Google Scholar] [CrossRef]
- Ozkan, A.S.; Amirov, R.K. An interior inverse problem for the impulsive Dirac operator. Tamkang J. Math. 2011, 42, 259–263. [Google Scholar] [CrossRef]
- Güldü, Y. A half-inverse problem for impulsive Dirac operator with discontinuous coefficient. Abstr. Appl. Anal. 2013, 2013, 181809. [Google Scholar] [CrossRef]
- Yang, C.F.; Yurko, V.A.; Zhang, R. On the Hochstadt Lieberman problem for the Dirac operator with discontinuity. J. Inverse-Ill-Posed Probl. 2020, 28, 849–855. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, C.F.; Bondarenko, N.P. Inverse spectral problems for the Dirac operator with complex-valued weight and discontinuity. J. Differ. Equ. 2021, 278, 100–110. [Google Scholar] [CrossRef]
- Gasymov, M.G.; Dzabiev, T.T. Solution of the inverse problem by two spectra for the Dirac equation on a finite interval. Dokl. Akad. Nauk. Azerb. Ssr 1966, 22, 3–6. [Google Scholar]
- Gasymov, M.G.; Levitan, B.M. The inverse problem for the Dirac system. Dokl. Akad. Nauk. Sssr 1966, 167, 967–970. [Google Scholar]
- Mochizuki, K.; Trooshin, I. Inverse problem for interior spectral data of the Dirac operator on a fnite interval. Kyoto Univ. Res. Inst. Math. Sci. 2002, 38, 387–395. [Google Scholar] [CrossRef]
- Cao, X.L.; Diao, H.A.; Liu, H.Y.; Zou, J. On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems. J. Math. Pures Appl. 2020, 9, 116–161. [Google Scholar] [CrossRef]
- Cao, X.L.; Diao, H.A.; Liu, H.Y.; Zou, J. On novel geometric structures of Laplacian eigenfunctions in R3 and applications to inverse problems. SIAM J. Math. Anal. 2021, 53, 1263–1294. [Google Scholar] [CrossRef]
- Diao, H.A.; Cao, X.L.; Liu, H.Y. On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications. Commun. Partial. Differ. Equ. 2021, 46, 630–679. [Google Scholar] [CrossRef]
- Diao, H.A.; Liu, H.Y.; Wang, L. Further results on generalized Holmgren’s principle to the Lame operator and applications. J. Differ. Equ. 2022, 309, 841–882. [Google Scholar] [CrossRef]
- Mamedov, K.R.; Akcay, O. Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient. Bound. Value Probl. 2014, 1, 110. [Google Scholar] [CrossRef]
- Hochstadt, H.; Lieberman, B. An inverse Sturm-Liouville problem with mixed given data. SIAM J. Appl. Math. 1978, 34, 676–680. [Google Scholar] [CrossRef]
- Levitan, B.M.; Sargsjan, I.S. Sturm-Liouville and Dirac Operators; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Freiling, G.; Yurko, V.A. Inverse Sturm-Liouville Problems and Their Applications; NOVA Science Publishers: New York, NY, USA, 2001. [Google Scholar]
- Zhang, R.; Xu, X.C.; Yang, C.F.; Bondarenko, N.P. Determination of the impulsive Sturm-Liouville operator from a set of eigenvalues. J. Inverse-Ill-Posed Probl. 2020, 28, 341–348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Yang, C.; Wang, K. Determination of the Impulsive Dirac Systems from a Set of Eigenvalues. Mathematics 2023, 11, 4086. https://doi.org/10.3390/math11194086
Zhang R, Yang C, Wang K. Determination of the Impulsive Dirac Systems from a Set of Eigenvalues. Mathematics. 2023; 11(19):4086. https://doi.org/10.3390/math11194086
Chicago/Turabian StyleZhang, Ran, Chuanfu Yang, and Kai Wang. 2023. "Determination of the Impulsive Dirac Systems from a Set of Eigenvalues" Mathematics 11, no. 19: 4086. https://doi.org/10.3390/math11194086
APA StyleZhang, R., Yang, C., & Wang, K. (2023). Determination of the Impulsive Dirac Systems from a Set of Eigenvalues. Mathematics, 11(19), 4086. https://doi.org/10.3390/math11194086