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Abstract: In this work, we consider the inverse spectral problem for the impulsive Dirac systems
on (0, π) with the jump condition at the point π

2 . We conclude that the matrix potential Q(x) on
the whole interval can be uniquely determined by a set of eigenvalues for two cases: (i) the matrix

potential Q(x) is given on
(

0, (1+α)π
4

)
; (ii) the matrix potential Q(x) is given on

(
(1+α)π

4 , π
)

, where
0 < α < 1.
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1. Introduction

Define ρ(x) =


1, x <

π

2

α, x >
π

2

(0 < α < 1). Consider the following impulsive Dirac

systems:

ly := By′(x) + Q(x)y(x) = λρ(x)y(x), x ∈
(

0,
π

2

)
∪
(π

2
, π
)

, (1)

with the boundary conditions

y1(0) = 0, y2(π) = 0, (2)

and the jump conditions

y
(π

2
+ 0
)
= Ay

(π

2
− 0
)

, (3)

where

B =

(
0 1

− 1 0

)
, Q(x) =

(
p(x) q(x)

q(x) −p(x)

)
, y(x) =

(
y1(x)

y2(x)

)
,

p(x) and q(x) are real-valued functions in L2(0, π), λ is the spectral parameter, and A =(
β 0

0 β−1

)
, β ∈ R+. The Equations (1)–(3), denoted by L = L(p(x), q(x), ρ(x), β), are

called a boundary value problem of the Dirac equations with the discontinuity conditions
at π

2 .
The discontinuous boundary value problems are related to the discontinuous material

characters of an intermediary. This kind of problem has been studied by many authors (see,
e.g., references [1–5]).
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The inverse problem for the Dirac operator was completely solved by two spectra in
references [6,7]. Mochizuki and Trooshin [8] studied the problem L = L(p(x), q(x), 1, 1)
with the separable boundary conditions. They gave the uniqueness theorem by a set of
values of eigenfunctions in some internal points and spectra. In reference [2], Ozkan and
Amirov studied the boundary value problem L = L(p(x), q(x), 1, β) and showed that the
potential function can be uniquely determined by a set of values of eigenfunctions at
some internal points and one spectrum. Amirov [1] gave representations of solutions of
the Dirac equation, properties of spectral data and showed that the Dirac operator can
be uniquely determined by the Weyl function on a finite interval (0, π) for the problem
L = L(p(x), q(x), 1, β).

There are also related studies on the spectral theory of partial differential operators
(see, e.g., references [9–12]). In reference [9], Cao, Diao, Liu and Zou introduced generalized
singular lines of the Laplacian eigenfunctions, and studied these singular lines and the
nodal lines. The theoretical findings can be applied directly to the inverse scattering
problem. Diao, Liu and Wang [12] derived a comprehensive and complete characterisation
of the GHP, and they established novel unique identifiability results by, at most, a few
scattering measurements.

For the impulsive Dirac operator, Mamedov and Akcay [13] proved that the sequences
of eigenvalues and normalizing numbers can uniquely determine the potential and they
gave the theorem on the necessary and sufficient conditions for the solvability and a solution
algorithm of the inverse problem for the boundary value problem L = L(p(x), q(x), ρ(x), 1).
In reference [3], Güldü studied the problem L and proved, using Hochstadt and Lieberman’s
method [14], that if the potential function p(x) is given on the interval (π

2 , π), then one
spectrum can determine p(x) on the whole interval.

In this paper, we consider the problem L = L(p(x), q(x), ρ(x), β). It is shown with
two cases that (i) if the potential p(x) and q(x) are given on (0, (1+α)π

4 ) and (ii) if the

potential p(x) and q(x) are given on ( (1+α)π
4 , π), respectively, then only a single spectrum

is sufficient to determine p(x), q(x) on (0, π), ρ(x) and β.

2. Preliminaries

Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1), satisfying the initial conditions

ϕ(0, λ) =

(
0

− 1

)
, ψ(π, λ) =

(
1

0

)

and the jump condition (3), respectively. Denote σ(x)=
∫ x

0 ρ(t)dt, τ= Imλ.
From references [3,15], we can ascertain that ϕ(x, λ) has the following representation:

ϕ(x, λ) = ϕ0(x, λ) +
∫ x

0
K1(x, t)ϕ0(t, λ)dt,

where ϕ0(x, λ) = (ϕ01(x, λ), ϕ02(x, λ))T satisfies the following forms:

ϕ01(x, λ)=


sin λσ(x), 0 < x <

π

2
,

β+ sin λσ(x)+β− sin λ(π−σ(x)),
π

2
< x < π,

(4)

ϕ02(x, λ)=


−cos λσ(x), 0 < x <

π

2
,

−β+ cos λσ(x)+β− cos λ(π−σ(x)),
π

2
< x < π.

(5)

Similarly, we can compute that the following representation holds for ψ(x, λ):

ψ(x, λ) = ψ0(x, λ) +
∫ π

x
K2(x, t)ψ0(t, λ)dt, (6)
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where ψ0(x, λ) = (ψ01(x, λ), ψ02(x, λ))T satisfies the following forms:

ψ01(x, λ)=


A+ cos λ(σ(π)−σ(x))

−A− cos λ(σ(π)+σ(x)−π), 0 < x <
π

2
,

cosλ(σ(π)−σ(x)),
π

2
< x < π,

(7)

ψ02(x, λ)=


A+ sin λ(σ(π)−σ(x))

+A− sin λ(σ(π)+σ(x)− π), 0 < x <
π

2
,

sinλ(σ(π)−σ(x)),
π

2
< x < π,

(8)

where β± = 1
2 (β± 1

αβ ), A± = 1
2 (

1
β ± αβ) and Kn(x, t) = (Kijn(x, t))i,j=1,2(n = 1, 2) with

Kijn(x, t) are real-valued continuous functions for i, j = 1, 2.
Denote

∆(λ) :=W[ϕ(x, λ), ψ(x, λ)]=ϕ2(x, λ)ψ1(x, λ)−ϕ1(x, λ)ψ2(x, λ). (9)

The function ∆(λ) is called the characteristic function of L, which is entire in λ. It follows
from (6)–(8) and reference [3] that we have

∆(λ) = ∆0(λ) + o(exp |τ|σ(π)), (10)

where ∆0(λ) = −β+ cos λσ(π) + β− cos λ(π − σ(π)).
Using the standard method in reference [16], or referring to references [3,17], one can

obtain the following lemma.

Lemma 1. (1) The operator l has an, at most, countable set of eigenvalues such that all of them are
real and simple.
(2) The eigenvalues denoted by {λn}n∈Z can be represented by the following asymptotic formula
for |n| → ∞:

λn =
2n

1 + α

(
1 + O

( 1
n

))
, λ ∈ Gε, (11)

where Gε := {λ : |λ− λ0
n| ≥ ε > 0, n ∈ Z}.

(3) |∆(λ)| ≥ Cε exp(|τ|σ(π)) = Cε exp
[
(1+α)π|τ|

2

]
for λ ∈ Gε, where Cε is a constant.

3. Main Results

We agree that if a certain symbol υ denotes an object related to L, then υ̃ denote the
analogous object related to L̃. In this paper, the main results are as follows.

Theorem 1. If λn = λ̃n for all n ∈ Z, Q(x) = Q̃(x) on
(

0, (1+α)
4 π

)
, then Q(x) = Q̃(x) a.e.

on (0, π), β = β̃ and α = α̃.

Theorem 2. If λn = λ̃n for all n ∈ Z, Q(x) = Q̃(x) on
(
(1+α)

4 π, π
)

, then Q(x) = Q̃(x) a.e.

on (0, π), β = β̃ and α = α̃.

Before proving the results, we shall mention the following lemma, which will be
needed later.

Lemma 2. If λn = λ̃n for all n ∈ Z, then ρ(x) = ρ̃(x) and β = β̃.
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Proof. It follows from (11) that α = α̃, that is ρ(x) = ρ̃(x). We know that ∆(λ) and
∆̃(λ) are entire functions of λ of order 1. According to the Hadamard’s factorization
theorem, the characteristic functions can be uniquely determined by the eigenvalues up
to multiplicative constants. Similar to reference [17], since λn = λ̃n for all n ∈ Z, we can
ascertain that ∆(λ) = C∆̃(λ), where C 6= 0 is a constant. From (10), we have β+ = Cβ̃+

and β− = Cβ̃−. Thus,
1
2
(β± 1

αβ
) =

C
2
(β̃± 1

αβ̃
).

Consequently, β = Cβ̃ and 1
β = C 1

β̃
. In view of β, β̃ > 0, we can obtain that β = β̃.

Proof of Theorem 1. By virtue of Lemma 2, we know that ρ(x) = ρ̃(x) and β = β̃.
For convenience, denote d = (1+α)π

4 . Substituting λ = λn into (9), we can ascertain that for
n ∈ Z,

ϕ2(d, λn)ψ1(d, λn)− ϕ1(d, λn)ψ2(d, λn) = 0.

If ϕ2(d, λn) 6= 0, then

ϕ1(d, λn)

ϕ2(d, λn)
=

ψ1(d, λn)

ψ2(d, λn)
, n ∈ Z. (12)

The same relation holds for L̃:

ϕ̃1(d, λn)

ϕ̃2(d, λn)
=

ψ̃1(d, λn)

ψ̃2(d, λn)
, n ∈ Z. (13)

Since p(x) = p̃(x) and q(x) = q̃(x) on (0, d), we can obtain that ϕ(x, λ) = ϕ̃(x, λ). That is,
ϕ1(x, λ) = ϕ̃1(x, λ) and ϕ2(x, λ) = ϕ̃2(x, λ) for x ∈ [0, d]. Together, (12) with (13) yields

ψ2(d, λn)ψ̃1(d, λn)− ψ̃2(d, λn)ψ1(d, λn) = 0. (14)

Note that ϕ2(d, λn) = 0 implies ψ2(d, λn) = ψ̃2(d, λn) = 0, so this case also leads to (14).
Define

A(λ) = ψ2(d, λ)ψ̃1(d, λ)− ψ̃2(d, λ)ψ1(d, λ).

It is obvious that A(λ) has zeros {λn}n∈Z. Next, we will show that A(λ) ≡ 0 in the whole
complex plane.

From (6)–(8), and the similar representations for ψ̃1(x, λ) and ψ̃2(x, λ), we have

A(λ) = O(exp 2|τ|(σ(π)− σ(d))) = O(exp |τ|σ(π)), |λ| → ∞. (15)

Define G(λ) := A(λ)
∆(λ) , which is entire in C. It follows from (15) and (3) in Lemma 1 that

|G(λ)| ≤ B1, for λ ∈ Gε,

where B1 is a positive constant. Thus, according to Liouville’s theorem, we know that G(λ)
is constant. Furthermore, it follows from (6)–(8), and the Riemann–Lebesque Lemma, that
for λ ∈ R,

lim
λ→∞

G(λ) = 0,

which means G(λ) = 0. Thus, A(λ) = 0 for all λ in C. Hence

ψ2(d, λ)

ψ1(d, λ)
=

ψ̃2(d, λ)

ψ̃1(d, λ)
.
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Note that ψ2(d,λ)
ψ1(d,λ) is the Weyl function, defined in reference [1], of the boundary value

problem for (1) on (d, π) with y1(d, λ) = 0 and the jump condition (3). It has been proved
in reference [1] that the Weyl function can uniquely determine the p(x) and q(x) on (d, π).
Thus, we can get that Q(x) = Q̃(x) a.e. on (d, π). This completes the proof. �

Proof of Theorem 2. According to Theorem 1 and Lemma 2, we have α = α̃, β = β̃,
p(x) = p̃(x) and q(x) = q̃(x) on (d, π). So, ψ(x, λ) = ψ̃(x, λ) on (d, π). From (12) and (13),
we show that

ϕ1(d, λn)ϕ̃2(d, λn)− ϕ̃1(d, λn)ϕ2(d, λn) = 0.

From (4) and (5), and the similar representations for ϕ̃1(x, λ) and ϕ̃2(x, λ), we have

A1(λ) = O(exp 2|τ|σ(d)) = O(exp |τ|σ(π)), |λ| → ∞. (16)

Define G1(λ) := A1(λ)
∆(λ) , which is entire in C. It follows from (16) and (3) in Lemma 1 that

|G1(λ)| ≤ B2, for λ ∈ Gε,

where B2 is a positive constant. Following the proof of Theorem 1, we have A1(λ) = 0 for
all λ in C, so

ϕ2(d, λ)

ϕ1(d, λ)
=

ϕ̃2(d, λ)

ϕ̃1(d, λ)
.

Note that ϕ2(d,λ)
ϕ1(d,λ) is the Weyl function, defined in reference [1], of the boundary value

problem for (1) on (0, d) with y1(d, λ) = 0 and the jump condition (3). It has been proved
in reference [1] that the Weyl function can uniquely determine the p(x) and q(x) on (0, d).
Thus, we can get that Q(x) = Q̃(x) a.e. on (0, d). This completes the proof. �
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