Endpoint Geodesic Formulas on Graßmannians Applied to Interpolation Problems
Abstract
:1. Introduction
2. Notations
3. Background and Settings
Lie Groups, Their Actions, Associated Homogeneous Spaces, Naturally Reductive Spaces
- is a submersion, such that is a linear isomorphism and ;
- induces a one-to-one correspondence between -invariant inner products on and G-invariant metrics on M.
- A reductive space is not necessary geodesically complete. In order to deal with the endpoint geodesic problem we consider another subclass, namely, the set of so-called naturally reductive homogeneous space.
4. Graßmannians
Two Faithful Representations for the Graßmannian
5. Endpoint Geodesics for Graßmannians
5.1. Closed Formulas for Endpoint Geodesics in Graßmannians, via Rotations
5.2. Closed Formulas for Endpoint Geodesics in Graßmannians, via Reflections
6. A Faithful Representation of the Unit Sphere
6.1. Closed Formula for Endpoint Geodesics in the Unit Sphere , via Rotations
6.2. Closed Formula for Endpoint Geodesics in the Unit Sphere , via reflections
7. Formulas for Geodesics in the Projective Space
8. The de Casteljau Algorithm on Riemannian Manifolds
8.1. Generating Cubic Polynomials
Algorithm 1 Generalized de Casteljau algorithm |
|
8.1.1. Cubic Polynomials in Graßmannians
8.1.2. Orthogonal Cubic Polynomials
8.1.3. Comparing Cubic Polynomials in with Cubic Polynomials in Graßmannians
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noakes, L.; Heinzinger, G.; Paden, B. Cubic splines on curved spaces. IMA J. Math. Control Inf. 1989, 6, 465–473. [Google Scholar] [CrossRef]
- Crouch, P.; Silva Leite, F. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1995, 1, 177–202. [Google Scholar] [CrossRef]
- Camarinha, M.; Silva Leite, F.; Crouch, P. On the geometry of Riemannian cubic polynomials. Differ. Geom. Its Appl. 2001, 15, 107–135. [Google Scholar] [CrossRef]
- Popiel, T.; Noakes, L. Bézier curves and C2 interpolation in Riemannian manifolds. J. Approx. Theory 2007, 148, 111–127. [Google Scholar] [CrossRef]
- De Casteljau, P. Outillages Méthodes Calcul. Technical Report—André Citroën Automobiles SA. 1959. [Google Scholar]
- Park, F.; Ravani, B. Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications. ASME J. Mech. Des. 1995, 117, 36–40. [Google Scholar] [CrossRef]
- Crouch, P.; Kun, G.; Silva Leite, F. The De Casteljau algorithm on Lie groups and spheres. J. Dynam. Control Syst. 1999, 5, 397–429. [Google Scholar] [CrossRef]
- Zhang, E.; Noakes, L. Optimal interpolants on Grassmann manifolds. Optim. Interpolants Grassmann Manifolds. Math. Control Signals Syst. 2019, 31, 363–383. [Google Scholar] [CrossRef]
- Zhang, E.; Noakes, L. The cubic de Casteljau construction and Riemannian cubics. Comput. Aided Geom. Des. 2019, 75, 101789. [Google Scholar] [CrossRef]
- Alashkar, T.; Ben Amor, B.; Daoudi, M.; Berretti, S. A Grassmann framework for 4D facial shape analysis. Pattern Recognit. 2016, 57, 21–30. [Google Scholar] [CrossRef]
- Shi, X.; Styner, M.; Lieberman, J.; Ibrahim, J.G.; Lin, W.; Zhu, H. Intrinsic Regression Models for Manifold-Valued Data. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), London, UK, 20–24 September 2009; Yang, G., Hawkes, D., Rueckert, D., Noble, A., Taylor, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5762, pp. 192–199. [Google Scholar]
- Batzies, E.; Hüper, K.; Machado, L.; Silva Leite, F. Geometric Mean and Geodesic Regression on Grassmannians. Linear Algebra Its Appl. 2015, 466, 83–101. [Google Scholar] [CrossRef]
- Eschenburg, J.H. Lecture Notes on Symmetric Spaces. Available online: https://myweb.rz.uni-augsburg.de/~eschenbu/symspace.pdf (accessed on 11 August 2023 ).
- Ziller, W. Lie Groups. Representation Theory and Symmetric Spaces. Available online: https://www2.math.upenn.edu/~wziller/math650/LieGroupsReps.pdf (accessed on 11 August 2023 ).
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press, Inc.: New York, NY, USA, 1983. [Google Scholar]
- Gallier, J.; Quaintance, J. Differential Geometry and Lie Groups. A Computational Perspective; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Loos, O. Symmetric Spaces. II: Compact Spaces and Classification; W. A. Benjamin, Inc.: New York, NY, USA; Amsterdam, The Netherlands, 1969. [Google Scholar]
- Loos, O. Symmetric Spaces. I: General Theory; W. A. Benjamin, Inc.: New York, NY, USA; Amsterdam, The Netherlands, 1969. [Google Scholar]
- Onishchik, A.L. Topology of Transitive Transformation Groups; Johann Ambrosius Barth: Leipzig, Germany, 1994. [Google Scholar]
- Helmke, U.; Hüper, K.; Trumpf, J. Newton’s Method on Graßmann Manifolds. arXiv 2007, arXiv:0709.2205. [Google Scholar]
- Lee, J.M. Introduction to Riemannian Manifolds, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Bendokat, T.; Zimmermann, R.; Absil, P.A. A Grassmann Manifold Handbook: Basic Geometry and Computational Aspects. arXiv 2020, arXiv:2011.13699. [Google Scholar]
- Stegemeyer, M. Endpoint Geodesics in Symmetric Spaces. Master’s Thesis, Institut für Mathematik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2020. [Google Scholar]
- Stewart, G. Matrix Algorithms. Vol. 1: Basic Decompositions; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1998. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; John Wiley & Sons, Inc.: New York, NY, USA, 1996; Volume 2. [Google Scholar]
- Kobayashi, S. Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. 1968, 20, 21–25. [Google Scholar] [CrossRef]
- Bertram, W. The Geometry of Jordan and Lie Structures; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Bézier, P. The Mathematical Basis of the UNISURF CAD System; Butterworths: London, UK, 1986. [Google Scholar]
- Farin, G.; Hansford, D. The Essentials of CAGD; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pina, F. Interpolation in the Generalized Essential Manifold. Ph.D. Thesis, Department of Mathematics, University of Coimbra, Coimbra, Portugal, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hüper, K.; Silva Leite, F. Endpoint Geodesic Formulas on Graßmannians Applied to Interpolation Problems. Mathematics 2023, 11, 3545. https://doi.org/10.3390/math11163545
Hüper K, Silva Leite F. Endpoint Geodesic Formulas on Graßmannians Applied to Interpolation Problems. Mathematics. 2023; 11(16):3545. https://doi.org/10.3390/math11163545
Chicago/Turabian StyleHüper, Knut, and Fátima Silva Leite. 2023. "Endpoint Geodesic Formulas on Graßmannians Applied to Interpolation Problems" Mathematics 11, no. 16: 3545. https://doi.org/10.3390/math11163545
APA StyleHüper, K., & Silva Leite, F. (2023). Endpoint Geodesic Formulas on Graßmannians Applied to Interpolation Problems. Mathematics, 11(16), 3545. https://doi.org/10.3390/math11163545