Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (cm-1)
- and if and only if
- (cm-2)
- (cm-3)
- (cbm-1)
- and if and only if
- (cbm-2)
- (cbm-3)
- (i)
- A point is called interior point of a set A whenever there exists such that
- (ii)
- A point is called limit point of a set A whenever for every 0 ;
- (iii)
- A subset is called open whenever each element of A is an interior point of A;
- (iv)
- A subset is called closed whenever each element of A belongs to A;
- (v)
- A sub-basis for a Hausdorff topology τ on X is a family and
- If for every , with there is such that for all , , then is said to be convergent, converges to x and and x is the limit point of , we denotes this by or as n
- If for every , with , there is such that, for all , , where then is said to be Cauchy sequence;
- If every Cauchy sequence in X is convergent, then is said to be a complete complex-valued b-metric space.
- converge to if and only if ;
- is a Cauchy sequence if and only if , where .
- (i)
- if and only if
- (ii)
- If then or
- (iii)
- if and only if or .
2. Main Result
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Osrav. 1993, 1, 5–11. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Akkouchi, M. Common fixed point theorems for two self-mappings of a b-metric space under an implicit relation. Hacet. J. Math. And Stat. 2011, 40, 805–810. [Google Scholar]
- Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Control 2017, 22, 17–30. [Google Scholar] [CrossRef]
- Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences; Springer: Singapore, 2021. [Google Scholar]
- Janković, S.; Kadelburg, Z.; Radenović, S. On cone metric spaces: A survey. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2591–2601. [Google Scholar] [CrossRef]
- Hamaizia, T.; Murthy, P.P. Z-contraction condition involving simulation function in b-metric space under fixed points considerations. Math. Moravica 2021, 24, 43–52. [Google Scholar] [CrossRef]
- Hamaizia, T.; Aliouche, A. A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications. Int. J. Nonlinear Anal. Appl. 2021, 12, 399–413. [Google Scholar]
- Leyew, B.T.; Abbas, M. Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 113–124. [Google Scholar]
- Merdaci, S.; Hamaizia, T.; Aliouche, A. Some generalization of non-unique fixed point theorems for multi-valued mapping in b-metric spaces. Univ. Politeh. Buchar. Sci. Bull. Ser. Appl. Math. Phys. 2021, 83, 55–62. [Google Scholar]
- Panja, S.; Roy, K.; Saha, M. Fixed points for a class of extended intrepolative ψF-contrations maps over a b-metric space and its application to dynamical programming. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 59–70. [Google Scholar]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. And Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Rao, K.P.R.; Swamy, P.R.; Prasad, J.R. A common fixed point theorem in complex valued b-metric spaces. Bull. Math. Stat. 2013, 1, 1–8. [Google Scholar]
- Datta, S.; Ali, S. A Common fixed point theorem under contractive condition in complex valued metric spaces. Int. J. Adv. Sci. Tech. Res. 2012, 6, 467–475. [Google Scholar]
- Dubey, A.K. Common fixed point results for contractive mappings in complex-valued b-metric spaces. Nonlinear Funct. Anal. Appl. 2015, 20, 257–268. [Google Scholar]
- Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comput. Math. Appl. 2012, 64, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, D.; Badal, A.; Joshi, V. Fixed point theorems in complex-valued metric spaces. J. Egypt. Math. Soc. 2016, 24, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequalities Appl. 2012, 84, 2012. [Google Scholar] [CrossRef]
- Yadav, G.; Sharma, R.K.; Prajapati, G.L. Common fixed point theorems of compatible maps in complex valued b-metric spaces. J. Sci. Res. 2020, 12, 431–446. [Google Scholar] [CrossRef]
- Öztürk, M. Common fixed point theorems satisfying contractive type conditions in complex valued metric spaces. Abstr. Appl. Anal. 2014, 2014, 598465. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Shagari, M.S.; Azam, A. Multivalued fixed point theorems in complex-valued b-metric spaces. J. Linear Topol. 2020, 9, 75–94. [Google Scholar]
- Mukheimer, A.A. Some fixed point theorems in complex valued b-metric spaces. Ital. J. Pure Appl. Math. 2019, 42, 115–125. [Google Scholar]
- Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. Fixed points of cyclic (ψ, φ, L, A, B)-contractive map-pings in ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 256, 18. [Google Scholar]
- Verma, R.K.; Pathak, H.K. Common fixed point theorems using property (E.A) in complex valued metric spaces. Thai J. Math. 2013, 11, 347–355. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadi, M.; Hamaizia, T. Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces. Mathematics 2023, 11, 3177. https://doi.org/10.3390/math11143177
Saadi M, Hamaizia T. Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces. Mathematics. 2023; 11(14):3177. https://doi.org/10.3390/math11143177
Chicago/Turabian StyleSaadi, Mohamed, and Taieb Hamaizia. 2023. "Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces" Mathematics 11, no. 14: 3177. https://doi.org/10.3390/math11143177
APA StyleSaadi, M., & Hamaizia, T. (2023). Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces. Mathematics, 11(14), 3177. https://doi.org/10.3390/math11143177