Next Article in Journal
Modeling the Dynamics of Negative Mutations for a Mouse Population and the Inverse Problem of Determining Phenotypic Differences in the First Generation
Previous Article in Journal
GRA-Based Dynamic Hybrid Multi-Attribute Three-Way Decision-Making for the Performance Evaluation of Elderly-Care Services
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces

System Dynamics and Control Laboratory, Department of Mathematics and Informatics, Oum El Bouaghi University, Oum El Bouaghi 04000, Algeria
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(14), 3177; https://doi.org/10.3390/math11143177
Submission received: 25 May 2023 / Revised: 13 June 2023 / Accepted: 14 June 2023 / Published: 20 July 2023

Abstract

:
In this paper, we establish a result for the existence of common fixed points for multi-valued mappings, satisfying some contractions for complex-valued b-metric spaces. Finally, we present an example to illustrate and support our results.
MSC:
47H10; 54H25; 54C30; 47H09

1. Introduction and Preliminaries

The notion of metric space was introduced in 1906 by M. Fréchet and developed shortly after by F. Hausdorff. In 1920, S. Banach [1] published a significant result in the field of fixed points, often referred to as the Banach fixed-point theorem. This theorem provides conditions under which a contraction mapping on a complete metric space has a unique fixed point. This result opened up new avenues for generalizing and expanding upon the theory of metric spaces. At the level of contractions, many researchers have explored various types of mappings that generalize the concept of a contraction.
In 1989, Bakhtin [2] generalized the notion of metric space to b-metric spaces and Czerwik [3,4] extended many proprieties of metric spaces to b-metric spaces. Subsequently, several authors published papers relating to the existence and uniqueness of fixed points for single-valued and multi-valued mappings defined on b-metric spaces and their applications, see for example [5,6,7,8,9,10,11,12,13,14].
In 2011, Azam et al. [15] introduced the notion of complex valued metric space and proved the existence of common fixed points of a pair of mappings satisfying contractive-type conditions and involving rational inequalities. The notion of complex-valued b-metric space was introduced by Rao et al. [16] in 2013. Many researchers have studied fixed point theorems in complex-valued metric and b-metric spaces [3,17,18,19,20,21,22]. In this paper, we establish a result for the existence of common fixed points for multi-valued mappings, satisfying some contractions involving rational inequalities for complex-valued b-metric spaces, we illustrate our results using an example.
We start the preliminaries with the definition of a partial order relation “ ” for the complex numbers set  C , as follows:
for all z 1 , z 2 C : z 1 z 2 if and only if Re ( z 1 ) Re ( z 2 ) and Im ( z 1 ) Im ( z 2 ) .
Clearly,  z 1 z 2 implies that one of the following cases holds:
Re ( z 1 ) = Re ( z 2 ) and Im ( z 1 ) = Im ( z 2 ) ; Re ( z 1 ) < Re ( z 2 ) and Im ( z 1 ) = Im ( z 2 ) ; Re ( z 1 ) = Re ( z 2 ) and Im ( z 1 ) < Im ( z 2 ) ; Re ( z 1 ) < Re ( z 2 ) and Im ( z 1 ) < Im ( z 2 ) .
We write
z 1 z 2 if z 1 z 2 and z 1 z 2 ;
and
z 1 z 2 if Re ( z 1 ) < Re ( z 2 ) and Im ( z 1 ) < Im ( z 2 ) .
One can easily prove the following:
For all z 1 , z 2 C : 0 z 1 z 2 implies z 1 < z 2 ; a , b R and a b implies a z b z , for all 0 z C ; a , b R and 0 a b implies a z 1 b z 2 , for all 0 z 1 , z 2 C .
Definition 1
([15]). Let X be a nonempty set. A function  d c X × X C is called a complex-valued metric on X if, for all  x , y , z X , the following conditions are satisfied:
(cm-1) 
0 d c ( x , y ) and  d c ( x , y ) = 0 if and only if  x = y ;
(cm-2) 
d c ( x , y ) = d c ( y , x ) ;
(cm-3) 
d c ( x , y ) d c ( x , z ) + d c ( z , y ) .
The pair  ( X , d c ) is called a complex-valued metric space.
Example 1
([23]). Define  d c : C × C C by
d c ( z 1 , z 2 ) = Re ( z 1 ) Re ( z 2 ) | + i | Im ( z 1 ) Im ( z 2 ) ;
then  ( X , d c ) is a complex-valued metric space.
Definition 2
([16]). Let X be a nonempty set and  s 1 be a given real number. A function  d c : X × X C is called a complex-valued b-metric on X if, for all  x , y , z X , the following conditions are satisfied:
(cbm-1) 
0 d c ( x , y ) and  d c ( x , y ) = 0 if and only if  x = y ;
(cbm-2) 
d c ( x , y ) = d c ( y , x ) ;
(cbm-3) 
d c ( x , y ) s [ d c ( x , z ) + d c ( z , y ) ] .
The pair  ( X , d c ) is called a complex-valued b-metric space.
Example 2
([24]). Let  X = [ 0 , 1 ] . Define the mapping  d c : X × X C by
d c ( x , y ) = x y 2 + i x y 2 for all x , y X .
Then  ( X , d c ) is a complex-valued b-metric space with  s = 2 .
Remark 1.
Clearly, a complex-valued b-metric space with  s = 1 is a complex valued metric space; however, the converse is not true in general, see for example Example 2.1 in [25].
Definition 3
([16]). Let  ( X , d c ) be a complex valued b-metric space.
(i) 
A point  x X is called interior point of a set A  X whenever there exists  0 r C such that  B ( x , r ) = { y X : d c ( x , y ) r } A ;
(ii) 
A point  x X is called limit point of a set A whenever for every 0  r C :   B ( x , r )     ( A { x } ) ϕ ;
(iii) 
A subset  A X is called open whenever each element of A is an interior point of A;
(iv) 
A subset  A X is called closed whenever each element of A belongs to A;
(v) 
A sub-basis for a Hausdorff topology τ on X is a family  F = { B ( x , r ) : x X and  0 r } .
Definition 4
([16]). Let  ( X , d c ) be a complex-valued b-metric space and  { x n } be a sequence in X and  x X .
  • If for every  c C , with  0 c there is  N N such that for all  n > N d c ( x n , x ) c , then  { x n } is said to be convergent,  { x n } converges to x and and x is the limit point of  { x n } , we denotes this by  lim n + x n = x or  x n x as n  + ;
  • If for every  c C , with  0 c , there is  N N such that, for all  n > N d c ( x n , x n + m ) c , where  m N , then  { x n } is said to be Cauchy sequence;
  • If every Cauchy sequence in X is convergent, then  ( X , d c ) is said to be a complete complex-valued b-metric space.
Definition 5
([18]). Let  ( X , d c ) be a complex-valued b-metric space and let  { x n } be a sequence in X. Then
  • { x n } converge to  x X if and only if  lim n + | d c ( x n , x ) | = 0 ;
  • { x n } is a Cauchy sequence if and only if  lim n + | d c ( x n + m , x n ) | = 0 , where  m N .
Example 3.
Let  X = [ 0 , 1 ] , 0 < θ π 2 and  p > 1 be real numbers. Define the mapping  d c : X × X C by
d c ( x , y ) = | x y | p e i θ = | x y | p cos θ + i sin θ , for all x , y [ 0 , 1 ] ;
then,  ( X , d c ) is a complete complex-valued b-metric space with  s = 2 p 1 .
Indeed, clearly, the properties (cbm-1) and (cbm-2) of Definition 2 are satisfied by  d c . On the other hand, for all  x , y , z X , we have
| x z + z y | p ( | x z | + | z y | ) p 2 p 1 ( | x z | p + | z y | p ) .
Since  0 e i θ , then
| x z + z y | p e i θ 2 p 1 ( | x z | p + | z y | p ) e i θ ,
which implies
d c ( x , z ) = | x z + z y | p e i θ 2 p 1 ( | x z | p + | z y | p ) e i θ = 2 p 1 ( d c ( x , z ) + d c ( y , z ) ) ,
then  d c satisfies (cb-3) and  ( X , d c ) is a complex-valued b-metric space with s = 2 p 1 .
Now, let us prove that  ( X , d c ) is complete. If  { x n } is a Cauchy sequence in  ( X , d c ) then for  m N
0 = l i m n + d c ( x m + n , x n ) = l i m n + x m + n x n p e i θ = l i m n + | x m + n x n | p
so,  { x n } is a Cauchy sequence in  ( X , d ) , with  d ( x , y ) | x y | p . Since  ( X , d ) is a complete b-metric space (see [26]), there exists  x X such that
0 = l i m n + d ( x n , x ) = l i m n + d c ( x n , x ) ,
then  { x n } converges to x in  ( X , d c ) and  ( X , d c ) is a complete complex-valued b-metric space.
Let  ( X , d c ) be a complex-valued b-metric space. For  A , B X , we denote by  C B ( X ) the set of all nonempty closed and bounded subsets of X.
For all  z 1 C , we denote  σ ( z 1 )   = { z 2 C z 1   z 2 } and
σ ( a , B ) = b B σ ( d c ( a , b ) ) = b B { z C : d c ( a , b ) z } , for all a X and B C B ( X ) .
For all  A , B C B ( X ) , we denote
σ ( A , B ) = a A σ ( a , B ) b B σ ( b , A ) .
Definition 6
([16]). Let  ( X , d c ) be a complex-valued b-metric space and  T : X C B ( X ) be a multi-valued map. For all  x X and A C B ( X ) we put  W x ( A ) = d c ( x , a ) : a A . Thus, for all  x , y X :   W x ( T y )   = d c ( x , u ) : u T y .
Definition 7
([16]). Let  ( X , d c ) be a complex-valued b-metric space. A subset A of X is called bounded from below if there exists some zX such that  z a , for all  a A .
Definition 8
([16]). Let  ( X , d c ) be a complex-valued b-metric space. A multi-valued mapping  T : X 2 C is called bounded from below if for each  x X there exists some  z x C such that  z x u , for all  u T x .
Definition 9
([16]). Let  ( X , d c ) be a complex-valued metric space. A multi-valued mapping  T : X C B ( X ) is said to have the lower bound property (l.b property) on  ( X , d c ) if for any  x X , the multi-valued mapping  F x : X   C defined by  F x ( y ) = W x ( T y ) is bounded from below. That is, for  x , y X , there exists an element  l x ( T y ) C such that  l x ( T y ) u for all  u W x ( T y ) , where  l x ( T y ) is called a lower bound of T associated with  ( x , y ) .
Definition 10
([16]). Let  ( X , d c ) be a complex-valued b-metric space. The multi-valued mapping  T : X C B ( X ) is said to have the greatest lower bound property (g.l.b property) on  ( X , d c ) if a greatest lower bound of  W x ( T y ) exists in  C for all  x , y X . We denote  d c ( x , T y ) by the g.l.b of  W x ( T y ) . That is,  d c ( x , T y )   = inf d c ( x , u ) : u T y .
We finish this section with the notion of “max” for the partial order relation “ ”:
Definition 11
([27]). The max function for the partial order relation “ ” is defined by the following.
(i) 
m a x { z 1 , z 2 } = z 2 if and only if  z 1 z 2 ;
(ii) 
If  z 1   m a x { z 2 , z 3 } then  z 1 z 2 or  z 1 z 3 ;
(iii) 
m a x { z 1 , z 2 } = z 2 if and only if  z 1 z 2 or  z 1 z 2 .

2. Main Result

In this section, we prove a common fixed-point theorem for multi-valued mappings on complex-valued b-metric spaces. Our main result is stated as
Theorem 1.
Let  ( X , d c ) be a complete complex-valued b-metric space and let  S , T : X C B ( X ) be multi-valued mappings with a g.l.b property such that
α max d c ( x , T y ) , d c ( y , S x ) , d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) σ S x , T y , for all x , y X ;
where α is a real, such that  0 < α < 1 2 s . Then, S and T have a common fixed point.
Proof. 
Let  x 0 be an arbitrary point in X and  x 1 S x 0 . From (1) (with  x = x 0 and  y = x 1 ), we have
α d c ( x 0 , T x 1 ) = α max d c ( x 0 , T x 1 ) , d c ( x 1 , S x 0 ) , d c ( x 0 , T x 1 ) d c ( x 1 , S x 0 ) 1 + d c ( x 0 , x 1 ) σ ( S x 0 , T x 1 ) ;
then
d c ( x 0 , T x 1 ) x S x 0 σ ( x , T x 1 ) ;
i.e.,
d c ( x 0 , T x 1 ) σ ( x , T x 1 ) , for all x S x 0 .
Since  x 1 S x 0 , we have
d c ( x 0 , T x 1 ) σ ( x 1 , T x 1 ) = x T x 1 σ ( d c ( x 1 , x ) ) ,
then, there exists  x 2 T x 1 , such that
α d c ( x 0 , T x 1 ) σ ( d c ( x 1 , x 2 ) ) ,
then
d c ( x 1 , x 2 ) α d c ( x 0 , T x 1 ) .
By using the greatest lower bound property (g.l.b property) of T, we obtain
d c ( x 1 , x 2 ) d c ( x 0 , T x 1 ) α d c ( x 0 , x 2 ) ,
so,
d c ( x 1 , x 2 ) α d c ( x 0 , x 2 ) .
Now, using the triangular inequality we obtain
d c ( x 1 , x 2 ) α s d c ( x 0 , x 1 ) + α s d c ( x 1 , x 2 ) ,
then
| d c ( x 1 , x 2 ) | α s 1 α s d c ( x 0 , x 1 ) .
Inductively, we construct a sequence  { x n } of elements in X, such that
n N : d c ( x n , x n + 1 ) ϱ n d c ( x 0 , x 1 ) ,
with  ϱ = α s 1 α s < 1 , x 2 n + 1 S x 2 n and  x 2 n + 2 T x 2 n + 1 .
For  m , n N , we have
d c ( x n , x n + m ) s d c ( x n , x n + 1 ) + s d c ( x n + 1 , x n + 2 ) + . . . + s d c ( x n + m 1 , x n + m ) s ϱ n + ϱ n + 1 + . . . + ϱ n + m d c ( x 0 , x 1 ) s ϱ n 1 ϱ d c ( x 0 , x 1 ) .
then
lim n + d c ( x n , x n + m ) = 0 .
So,  { x n } is a Cauchy sequence in  ( X , d c ) which is a complete complex-valued b-metric space, then, there exists  v X such that  x n   v as n + .
Let us now prove that  v T v S v . From (1) we have
α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) σ ( d c ( x 2 n , T v ) ) ,
and then
α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) x S x 2 n σ ( d c ( x , T v ) ) .
On the other hand
α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) σ ( d c ( x , T v ) ) , x S x 2 n .
Since  x 2 n + 1 S x 2 n , we have
α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) σ ( d c ( x 2 n + 1 , T v ) ) = u T u σ ( d c ( x 2 n + 1 , u ) ) .
Then, there exists  v n T v , such that
α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) σ ( d c ( x 2 n + 1 , v n ) )
i.e.,
d c ( x 2 n + 1 , v n ) α max d c ( x 2 n , T v ) , d c ( v , S x 2 n ) , d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) .
With the property  ( i i ) of Definition 11 it holds
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v )
or
d c ( x 2 n + 1 , v n ) α d c ( v , S x 2 n )
or
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) ,
which implies
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v )
or
d c ( x 2 n + 1 , v n ) α d c ( v , S x 2 n )
or
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) .
Now, we distinguish three cases:
Case 1:  d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v ) .
By the greatest lower bound property of T, we have
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , v n ) ,
with the triangular inequality
d c ( x 2 n + 1 , v n ) α s ( d c ( x 2 n , x 2 n + 1 ) + d c ( x 2 n + 1 , v n ) ) ,
which implies
d c ( x 2 n + 1 , v n ) s α 1 s α d c ( x 2 n , x 2 n + 1 ) .
On the other hand, by the triangular inequality, we have
d c ( v , v n ) s ( d c ( v , x 2 n + 1 ) + d c ( x 2 n + 1 , v n ) )
then
d c ( v , v n ) s d c ( v , x 2 n + 1 ) + s 2 α 1 s α d c ( x 2 n , x 2 n + 1 ) .
Letting  n + , we find
lim n + d c ( v , v n ) = 0 .
Case 2:  d c ( x 2 n + 1 , v n ) α d c ( v , S x 2 n ) .
With the greatest lower bound property of S
d c ( x 2 n + 1 , v n ) α d c ( v , x 2 n + 1 ) .
With the triangular inequality
d c ( v , v n ) s ( d c ( v , x 2 n + 1 ) + d c ( x 2 n + 1 , v n ) ) s d c ( v , x 2 n + 1 ) + α s d c ( v , x 2 n + 1 ) .
Letting  n + , we obtain
lim n + d c ( v , v n ) = 0 .
Case 3:  d c ( x 2 n + 1 , v n ) α d c ( x 2 n , T v ) d c ( v , S x 2 n ) 1 + d c ( x 2 n , v ) .
With the greatest lower bound property of S and T
d c ( x 2 n + 1 , v n ) α d c ( x 2 n , v ) d c ( v , x 2 n ) 1 + d c ( x 2 n , v ) .
With the triangular inequality
d c ( v , v n ) s ( d c ( v , x 2 n + 1 ) + d c ( x 2 n + 1 , v n ) ) s d c ( v , x 2 n + 1 ) + s α d c ( x 2 n , v ) d c ( v , x 2 n ) 1 + d c ( x 2 n , v ) .
Letting  n + , we find
lim n + d c ( v , v n ) = 0 .
In these three cases, we have  d c ( v , v n ) 0 as  n + then  { v n } converges to  v .
Since  { v n } T v and  T v is closed, we obtain v T v .
By the same method we prove that  v S v .
So, v is a common fixed point for T and S. □
By setting  T = S in Theorem 1, we have the following corollary:
Corollary 1.
Let  ( X , d c ) be a complete complex-valued b-metric space and let  S : X C B ( X ) be a multi-valued mapping with g.l.b property, such that
α max d c ( x , S y ) , d c ( y , S x ) , d c ( x , S y ) d c ( y , S x ) 1 + d c ( x , y ) σ S x , S y , for all x , y X ,
where α is real, such that  0 < α < 1 2 s . Then, S has a fixed point.
Finally, by setting  s = 1 in Theorem 1 and Corollary 1, we have the following corollaries,
Corollary 2.
Let  ( X , d c ) be a complete complex-valued metric space and let  S , T : X C B ( X ) be multi-valued mappings with g.l.b property such that
α max d c ( x , T y ) , d c ( y , S x ) , d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) σ S x , T y , for all x , y X ,
where α is a real such that  0 < α < 1 2 . Then S and T have a common fixed point.
Corollary 3.
Let  ( X , d c ) be a complete complex-valued metric space and let  S : X C B ( X ) be multi-valued mapping with g.l.b property, such that
α max d c ( x , S y ) , d c ( y , S x ) , d c ( x , S y ) d c ( y , S x ) 1 + d c ( x , y ) σ S x , S y , for all x , y X ,
where α is a real, such that  0 < α < 1 2 . Then S has a fixed point.
Now, we illustrate our main results using the following example:
Example 4.
Let  ( X , d c ) be the complete complex-valued b-metric space given in Example 3 with  p = 2 and  θ = π 2 that is
X = [ 0 , 1 ] and d c = | x y | 2 i , for all x , y X .
We define the mappings  S , T : X C B ( X ) by
S x = { t X : 0 t x 7 } and T x = { t X : 0 t x 6 } , for all x X .
For all  x , y X , we have
W x ( T y ) = d c ( x , t ) : t T y = | x t | 2 i : 0 t y 6 .
For all  | x t | 2 i W x ( T y ) , we have
0 | x t | 2 i if x y 6
and
| x y 6 | 2 i | x t | 2 i if x y 6 ,
then T has the greatest lower bound property and
for all x , y X : d ( x , T y ) = 0 if 0 x < y 6 x y 6 i if y 6 x 1 .
In a similar way we prove that S has the greatest lower bound property and
for all x , y X : d ( y , S x ) = 0 if 0 y < x 7 y x 7 i if x 7 y 1 .
If  x = y = 0 , then the condition (1) is obviously satisfied. Without losing the generality, we can suppose  0 < x < y 1 . Then
σ ( m , S x ) = t S x z C : d c ( t , m ) z = 0 t x 7 z C : | m t | 2 i z = 0 t x 7 a + i b C : 0 a and | m t | 2 b = a + i b C : 0 a and | m x 7 | 2 b ,
hence
m T y σ ( m , S x ) = m T y a + i b C : 0 a and | m x 7 | 2 b = 0 m y 6 a + i b C : 0 a and | m x 7 | 2 b = a + i b C : 0 a and y 6 x 7 2 b = z C : y 6 x 7 2 i z = σ y 6 x 7 2 i .
In a similar way
σ ( , T y ) = t T y z C : d c ( t , ) z = 0 t y 6 z C : | t | 2 i z = 0 t y 6 a + i b C : 0 a and | t | 2 b = a + i b C : 0 a and | y 6 | 2 b
then
S x σ ( , T y ) = S x a + i b C : 0 a and | y 6 | 2 b = 0 x 7 a + i b C : 0 a and | y 6 | 2 b = a + i b C : 0 a and x 7 y 6 2 b = z C : x 7 y 6 2 i z = σ y 6 x 7 2 i .
In summary, for all,  0 < x < y 1 , we have
for all x , y X : d ( x , T y ) = 0 if 0 x < y 6 x y 6 i if y 6 x 1 ;
for all x , y X : d ( y , S x ) = 0 if 0 y < x 7 y x 7 i if x 7 y 1
and
σ ( S x , T y ) = σ y 6 x 7 2 i .
If  0 x y 6 then
d c ( x , T y ) = d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) = 0 .
if  y 6 < x 1 then
d c ( x , T y ) = x y 6 2 i y x 7 2 i = d ( y , S x ) .
and
d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) = x y 6 2 y x 7 2 1 + | x y | 2 i = x y 6 2 y x 7 2 1 + | x y | 2 i 1 + | x y | 4 y x 7 2 i = d ( y , S x ) .
then for all  0 < x < y 1
max d c ( x , T y ) , d c ( y , S x ) , d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) = y x 7 2 i = d ( y , S x ) .
For all  0 < x < y 1 , we have
y 6 x 7 2 i 1 5 y x 7 2 i ,
then
1 5 max d c ( x , T y ) , d c ( y , S x ) , d c ( x , T y ) d c ( y , S x ) 1 + d c ( x , y ) = 1 5 d ( y , S x ) σ ( S x , T y )
that is S and T satisfies (1) with  α = 1 5 < 1 4 = 1 2 s . Then, S and T have a common fixed point which is equal to 0.

3. Conclusions

This paper makes a significant contribution by establishing a result concerning the existence of common fixed points for multi-value maps that satisfy contraction conditions for complex- valued b-metric spaces. The study deepens the concept of fixed points in the context of multi-value mapping and introduces the framework of complex-value b-metric spaces. By proving that these multi-valued mappings satisfy contraction properties, the paper offers a solid basis for new research and applications in various areas, including functional analysis, fixed-point theory, and complex analysis. The results obtained in this manuscript help to advance our understanding of the theory of fixed points in the context of b-metric spaces and open up possibilities for exploring related concepts and properties in the future.

Author Contributions

Writing—original draft, M.S. and T.H. All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Bakhtin, I.A. The contraction principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  3. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Osrav. 1993, 1, 5–11. [Google Scholar]
  4. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
  5. Akkouchi, M. Common fixed point theorems for two self-mappings of a b-metric space under an implicit relation. Hacet. J. Math. And Stat. 2011, 40, 805–810. [Google Scholar]
  6. Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Control 2017, 22, 17–30. [Google Scholar] [CrossRef]
  7. Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences; Springer: Singapore, 2021. [Google Scholar]
  8. Janković, S.; Kadelburg, Z.; Radenović, S. On cone metric spaces: A survey. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2591–2601. [Google Scholar] [CrossRef]
  9. Hamaizia, T.; Murthy, P.P. Z-contraction condition involving simulation function in b-metric space under fixed points considerations. Math. Moravica 2021, 24, 43–52. [Google Scholar] [CrossRef]
  10. Hamaizia, T.; Aliouche, A. A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications. Int. J. Nonlinear Anal. Appl. 2021, 12, 399–413. [Google Scholar]
  11. Leyew, B.T.; Abbas, M. Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 113–124. [Google Scholar]
  12. Merdaci, S.; Hamaizia, T.; Aliouche, A. Some generalization of non-unique fixed point theorems for multi-valued mapping in b-metric spaces. Univ. Politeh. Buchar. Sci. Bull. Ser. Appl. Math. Phys. 2021, 83, 55–62. [Google Scholar]
  13. Panja, S.; Roy, K.; Saha, M. Fixed points for a class of extended intrepolative ψF-contrations maps over a b-metric space and its application to dynamical programming. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 59–70. [Google Scholar]
  14. Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
  15. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. And Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
  16. Rao, K.P.R.; Swamy, P.R.; Prasad, J.R. A common fixed point theorem in complex valued b-metric spaces. Bull. Math. Stat. 2013, 1, 1–8. [Google Scholar]
  17. Datta, S.; Ali, S. A Common fixed point theorem under contractive condition in complex valued metric spaces. Int. J. Adv. Sci. Tech. Res. 2012, 6, 467–475. [Google Scholar]
  18. Dubey, A.K. Common fixed point results for contractive mappings in complex-valued b-metric spaces. Nonlinear Funct. Anal. Appl. 2015, 20, 257–268. [Google Scholar]
  19. Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comput. Math. Appl. 2012, 64, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
  20. Singh, N.; Singh, D.; Badal, A.; Joshi, V. Fixed point theorems in complex-valued metric spaces. J. Egypt. Math. Soc. 2016, 24, 402–409. [Google Scholar] [CrossRef] [Green Version]
  21. Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequalities Appl. 2012, 84, 2012. [Google Scholar] [CrossRef]
  22. Yadav, G.; Sharma, R.K.; Prajapati, G.L. Common fixed point theorems of compatible maps in complex valued b-metric spaces. J. Sci. Res. 2020, 12, 431–446. [Google Scholar] [CrossRef]
  23. Öztürk, M. Common fixed point theorems satisfying contractive type conditions in complex valued metric spaces. Abstr. Appl. Anal. 2014, 2014, 598465. [Google Scholar] [CrossRef] [Green Version]
  24. Ahmad, F.; Shagari, M.S.; Azam, A. Multivalued fixed point theorems in complex-valued b-metric spaces. J. Linear Topol. 2020, 9, 75–94. [Google Scholar]
  25. Mukheimer, A.A. Some fixed point theorems in complex valued b-metric spaces. Ital. J. Pure Appl. Math. 2019, 42, 115–125. [Google Scholar]
  26. Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. Fixed points of cyclic (ψ, φ, L, A, B)-contractive map-pings in ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 256, 18. [Google Scholar]
  27. Verma, R.K.; Pathak, H.K. Common fixed point theorems using property (E.A) in complex valued metric spaces. Thai J. Math. 2013, 11, 347–355. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Saadi, M.; Hamaizia, T. Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces. Mathematics 2023, 11, 3177. https://doi.org/10.3390/math11143177

AMA Style

Saadi M, Hamaizia T. Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces. Mathematics. 2023; 11(14):3177. https://doi.org/10.3390/math11143177

Chicago/Turabian Style

Saadi, Mohamed, and Taieb Hamaizia. 2023. "Multivalued Common Fixed Points Theorem in Complex b-Metric Spaces" Mathematics 11, no. 14: 3177. https://doi.org/10.3390/math11143177

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop