On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics
Abstract
:1. Introduction
2. Statement of the Initial Boundary Value Problem and Formulation of the Result
3. A Priori Estimates
4. Stabilization of the Solution with an Unlimited Increase in Time
5. Estimation of the Stabilization Rate
6. Conclusions
Funding
Conflicts of Interest
References
- Rajagopal, K.L.; Tao, L. Mechanics of Mixtures; World Scientific Publishing: Hackensack, NJ, USA, 1995. [Google Scholar]
- Nigmatulin, R.I. Dynamics of Multiphase Media: V. 1–2; Hemisphere: New York, NY, USA, 1990. [Google Scholar]
- Mamontov, A.E.; Prokudin, D.A. Viscous compressible homogeneous multi–fluids with multiple velocities: Barotropic existence theory. Sib. Electron. Math. Rep. 2017, 14, 388–397. [Google Scholar]
- Mamontov, A.E.; Prokudin, D.A. Viscous compressible multi–fluids: Modeling and multi–D existence. Methods Appl. Anal. 2013, 20, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, A.D.; Massoudi, M. The heat flux vector(s) in a two component fluid mixture. Fluids 2020, 5, 77. [Google Scholar] [CrossRef]
- Lee, R.T.; Yang, K.T.; Chiou, Y.C. A novel model for a mixed-film lubrication with oil-in-water emulsions. Tribol. Int. 2013, 66, 241–248. [Google Scholar] [CrossRef]
- Malek, J.; Rajagopal, K.R. A thermodynamic framework for a mixture of two liquids. Nonlinear Anal. Real World Appl. 2008, 9, 1649–1660. [Google Scholar] [CrossRef]
- Atkin, R.J.; Craine, R.E. Continuum theories of mixtures: Applications. IMA J. Appl. Math. 1976, 17, 153–207. [Google Scholar] [CrossRef]
- Muller, I. A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 1968, 28, 1–39. [Google Scholar] [CrossRef]
- Wang, S.H.; Szeri, A.Z.; Rajagopal, K.R. Lubrication with emulsion in cold-rolling. J. Tribol. Trans. ASME 1993, 115, 523–531. [Google Scholar] [CrossRef]
- Chamniprasart, K.; Al-Sharif, A.; Rajagopal, K.R.; Szeri, A.Z. Lubrication with binary mixtures—Bubbly oil. J. Tribol. Trans. ASME 1993, 115, 253–260. [Google Scholar] [CrossRef]
- Wang, S.H.; Al-Sharif, A.; Rajagopal, K.R.; Szeri, A.Z. Lubrication with binary mixtures—Liquid-liquid emulsion in an EHL conjunction. J. Tribol. Trans. ASME 1993, 115, 515–522. [Google Scholar] [CrossRef]
- Al-Sharif, A.; Chamniprasart, K.; Rajagopal, K.R.; Szeri, A.Z. Lubrication with binary mixtures—Liquid-liquid emulsion. J. Tribol. Trans. ASME 1993, 115, 45–66. [Google Scholar] [CrossRef]
- Szeri, A.Z. Fluid Film Lubrication: Theory and Design; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Zlotnik, A.A.; Ducomet, B. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force. Sb. Math. 2005, 196, 1745–1799. [Google Scholar] [CrossRef]
- Ducomet, B.; Zlotnik, A. Lyapunov functional method for 1D radiative and reactive viscous gas dynamics. Arch. Ration. Mech. Anal. 2005, 177, 185–229. [Google Scholar] [CrossRef]
- Straskraba, I.; Zlotnik, A. Global properties of solutions to 1D–viscous compressible barotropic fluid equations with density dependent viscosity. Z. Für Angew. Math. Phys. 2003, 54, 593–607. [Google Scholar] [CrossRef]
- Straskraba, I.; Zlotnik, A. On a decay rate for 1D-viscous compressible barotropic fluid equations. J. Evol. Equ. 2002, 2, 69–96. [Google Scholar] [CrossRef]
- Straskraba, I. Recent progress in the mathematical theory of 1D barotropic flow. Ann. Dell’Universita Ferrara 2009, 55, 395–405. [Google Scholar] [CrossRef]
- Zlotnik, A.A.; Nguen, Z.B. Properties and asymptotic behavior of solutions of some problems of one-dimensional motion of a viscous barotropic gas. Math. Notes 1994, 55, 471–482. [Google Scholar] [CrossRef]
- Antontsev, S.N.; Kazhikhov, A.V.; Monakhov, V.N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids; North–Holland Publishing Co.: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Kazhikhov, A.V. Stabilization of solutions of the initial–boundary value problem for barotropic viscous fluid equations. Differ. Uravn. 1979, 15, 662–667. [Google Scholar]
- Prokudin, D.A. Unique solvability of initial–boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids. Sib. Electron. Math. Rep. 2017, 14, 568–585. [Google Scholar]
- Prokudin, D.A. Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures. J. Phys. Conf. Ser. 2017, 894, 012076. [Google Scholar] [CrossRef] [Green Version]
- Prokudin, D.A. On the stabilization of solutions to the initial–boundary value problem for the equations of dynamics of viscous compressible multicomponent media. Sib. Electron. Math. Rep. 2021, 18, 1278–1285. [Google Scholar] [CrossRef]
- Li, S. On one–dimensional compressible Navier–Stokes equations for a reacting mixture in unbounded domains. Z. Für Angew. Math. Phys. 2017, 68, 106. [Google Scholar] [CrossRef]
- Bresh, D.; Huang, X.; Li, J. Global weak solutions to one–dimensional non–conservative viscous compressible two–phase system. Commun. Math. Phys. 2012, 309, 737–755. [Google Scholar] [CrossRef]
- Papin, A.A. On the uniqueness of the solutions of an initial boundary–value problem for the system of a heat–conducting two–phase mixture. Math. Notes 2010, 309, 594–598. [Google Scholar] [CrossRef]
- Papin, A.A.; Akhmerova, I.G. Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture. Math. Notes 2010, 87, 230–243. [Google Scholar] [CrossRef]
- Zlotnik, A.A. Weak solutions to the equations of motion of viscous compressible reacting binary mixtures: Uniqueness and Lipschitz-continuous dependence on data. Math. Notes 2004, 75, 278–283. [Google Scholar] [CrossRef]
- Chen, G.Q.; Hof, D.; Trivisa, K. Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Arch. Ration. Mech. Anal. 2003, 166, 321–358. [Google Scholar] [CrossRef]
- Zlotnik, A.A. Uniform estimates and stabilization of solutions to equations of one-dimensional motion of a multicomponent barotropic mixture. Math. Notes 1995, 58, 885–889. [Google Scholar] [CrossRef]
- Tabata, M. Local solutions to the Cauchy problem for the system of equations describing the motion of a mixture of compressible viscous and heat-conductive fluids. Kobe J. Math. 1992, 9, 195–205. [Google Scholar]
- Petrov, A.N. Well-posedness of initial-boundary value problems for one-dimensional equations of mutually penetrating flows of ideal gases. Din. Sploshnoĭ Sredy 1982, 56, 105–121. [Google Scholar]
- Antontsev, S.N.; Papin, A.A. Approximation methods of solving problems of two–phase filtration. Dokl. Akad. Nauk. SSSR 1979, 247, 521–525. [Google Scholar]
- Kazhikov, A.V.; Petrov, A.N. Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture. Din. Sploshnoĭ Sredy 1978, 35, 61–73. [Google Scholar]
- Zhang, J.X.; Yang, G.H. Low-complexity tracking control of strict-feedback systems with unknown control directions. IEEE Trans. Autom. Control 2019, 64, 5175–5182. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W. Adaptive neural network sliding mode control for nonlinear singular fractional order systems with mismatched uncertainties. Fractal Fract. 2020, 4, 50. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yang, G.H. Fault-tolerant output-constrained control of unknown Euler–Lagrange systems with prescribed tracking accuracy. Automatica 2020, 111, 108606. [Google Scholar] [CrossRef]
- Maz’ya, V. Sobolev Spaces; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ladyzhenskaya, O.A.; Ural’tseva, N.N. Linear and Quasi-Linear Elliptic Equations; Academic Press: New York, NY, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokudin, D. On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics. Mathematics 2023, 11, 3065. https://doi.org/10.3390/math11143065
Prokudin D. On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics. Mathematics. 2023; 11(14):3065. https://doi.org/10.3390/math11143065
Chicago/Turabian StyleProkudin, Dmitriy. 2023. "On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics" Mathematics 11, no. 14: 3065. https://doi.org/10.3390/math11143065
APA StyleProkudin, D. (2023). On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics. Mathematics, 11(14), 3065. https://doi.org/10.3390/math11143065