Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Individual Cell Model
2.1.1. Classical Solution Scheme
2.1.2. Free Boundary Problem
2.2. Numerical Scheme
2.2.1. Weak Form Derivation
2.2.2. Stefan Problems—Phase-Transition Formulation
2.2.3. Cell Deformation: Free Boundary Conversion
2.2.4. Phase-Transition Formulation
3. Results
3.1. Level Set Method
- Test 1: and level set solution as where and .
- Test 2: Modifications of equations from Test I. and level set solution as where and .
3.2. Enthalpy Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BM | basement membrane |
ECM | extracellular matrix |
PDE | partial differential equation |
ODE | ordinary differential equation |
2D | two-dimensional |
3D | three-dimensional |
TLA | Three letter acronym |
LD | Linear dichroism |
FDM | finite difference method |
FEM | finite element method |
MMP | matrix metalloproteinases |
MT1-MMP | type 1-matrix metalloproteinases |
References
- Preziosi, L. Cancer Modelling and Simulation; Chapman Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporn, M.B. The war on cancer. Lancet 1996, 347, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Andasari, V.; Chaplain, M.A.J. Intracellular modelling of cell-matrix adhesion during cancer cell invasion. Math. Mod. Nat. Phen. 2012, 7, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Andasari, V.; Roper, R.T.; Swat, M.H.; Chaplain, M.A.J. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: Applications to multiscale modelling of cancer cell growth and invasion. PLoS ONE 2012, 7, e33726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stylli, S.S.; Kaye, A.H.; Lock, P. Invadopodia: At the cutting edge of tumour invasion. J. Clin. Neurosci. 2008, 15, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.M. Invadopodia. Curr. Biol. 2008, 18, R362–R364. [Google Scholar] [CrossRef] [Green Version]
- Gallinato, O.; Poignard, C. Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation. J. Comput. Phys. 2017, 339, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Saitou, T.; Rouzimaimaiti, M.; Koshikawa, N.; Seiki, M.; Ichikawa, K.; Suzuki, T. Mathematical modeling of invadopodia formation. J. Theo. Biol. 2012, 298, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.A.; Courtneidge, S.A. The ’ins’ and ’outs’ of podosomes and invadopodia: Characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 2011, 12, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Loling Othman, N.; Suzuki, T. Free Boundary Problem of Cell Deformation and Invasion. In Proceedings of the Methods of Mathematical Oncology: Fusion of Mathematics and Biology, Osaka, Japan, 26–28 October 2020; pp. 107–123. [Google Scholar]
- Anderson, A.R.A.; Chaplain, M.A.J.; Newman, E.L.; Steele, R.J.C.; Thompson, A.M. Mathematical modelling of tumour invasion and metastasis. Comput. Math. Methods Med. 2000, 2, 129–154. [Google Scholar] [CrossRef] [Green Version]
- Chaplain, M.A.J.; Lolas, G. Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Net. Hetero. Med. 2006, 1, 399–439. [Google Scholar] [CrossRef]
- Ramis-Conde, I.; Chaplain, M.A.J.; Anderson, A.R.A. Mathematical modelling of cancer cell invasion of tissue. Math. Comput. Modelling 2008, 47, 533–545. [Google Scholar] [CrossRef]
- Chaplain, M.A.J.; Lachowicz, M.; Szymańska, Z.; Wrzosek, D. Mathematical modelling of cancer invasion: The importance of cell–cell adhesion and cell–matrix adhesion. Math. Models Methods Appl. Sci. 2011, 21, 719–743. [Google Scholar] [CrossRef] [Green Version]
- Chaplain, M.A.J.; Lolas, G. Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 2005, 15, 1685–1734. [Google Scholar] [CrossRef] [Green Version]
- Andasari, V.; Gerisch, A.; Lolas, G.; South, A.P.; Chaplain, M.A.J. Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation. J. Math. Biol. 2011, 63, 141–171. [Google Scholar] [CrossRef]
- Admon, M.A.B. Mathematical Modeling and Simulation in an Individual Cancer Cell Associated with Invadopodia Formation. Ph.D. Thesis, Osaka University, Suita, Japan, 2015. [Google Scholar]
- Gallinato, O.; Ohta, M.; Poignard, C.; Suzuki, T. Free boundary problem for cell protrusion formations: Theoretical and numerical aspects. J. Math. Biol. 2017, 75, 263–307. [Google Scholar] [CrossRef] [Green Version]
- Yaacob, N.; Shafie, S.; Suzuki, T.; Admon, M.A. Level set method for free boundary of invasive cancer cell using different functions of matrix metalloproteinases. J. Phys. Conf. Ser. 2021, 1988, 012020. [Google Scholar] [CrossRef]
- Mahemuti, R.; Muhammadhaji, A.; Suzuki, T. Research on the Solution of Cell Invasion Model with Free Boundary. Open J. Appl. Sci. 2017, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Groot, R.D. Second order front tracking algorithm for Stefan problem on a regular grid. J. Comput. Phys. 2018, 372, 956–971. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Merriman, B.; Osher, S.; Smereka, P. A simple level set method for solving Stefan problems. J. Comput. Phys. 1997, 135, 8–29. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids: With Applications to Soft Matter; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Hecht, F. New development in FreeFem++. J. Numer. Math. 2012, 20, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. J. Comput. Phys. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramlee, M.A.; Loling Othman, N.; Suzuki, T. Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem. Mathematics 2023, 11, 3044. https://doi.org/10.3390/math11143044
Ramlee MA, Loling Othman N, Suzuki T. Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem. Mathematics. 2023; 11(14):3044. https://doi.org/10.3390/math11143044
Chicago/Turabian StyleRamlee, Muhammad Akmal, Nuha Loling Othman, and Takashi Suzuki. 2023. "Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem" Mathematics 11, no. 14: 3044. https://doi.org/10.3390/math11143044
APA StyleRamlee, M. A., Loling Othman, N., & Suzuki, T. (2023). Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem. Mathematics, 11(14), 3044. https://doi.org/10.3390/math11143044