Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics
Abstract
:1. Introduction
2. Lagrangian Formalism
2.1. Action and Non-Standard Lagrangians
2.2. Limits on Construction of Non-Standard Lagrangians
2.3. From Nonlinear to Linear Equations
2.4. Non-Standard Lagrangians without Limits
3. Population Dynamics Models and Methods
3.1. Selected Models
3.2. Methods to Construct Non-Standard Lagrangians
4. Models and Their Non-Standard Lagrangians
4.1. Lotka–Volterra Model
4.2. Verhulst Model
4.3. Gompertz Model
4.4. Host–Parasite Model
4.5. SIR Model
5. Null Lagrangians for the Population Models
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagrange, J.L. Analytical Mechanics; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, 3rd ed.; Addison-Wesley: San Francisco, CA, USA, 2002. [Google Scholar]
- José, J.V.; Saletan, E.J. Classical Dynamics; A Contemporary Approach; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Lopuszanski, J. The Inverse Variational Problems in Classical Mechanics; World Scientific: Singapore, 1999. [Google Scholar]
- Doughty, N.A. Lagrangian Interactions; Addison-Wesley: New York, NY, USA, 1990. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Helmholtz, H.; Reine, J. Ueber die physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 1887, 100, 137–166. [Google Scholar] [CrossRef]
- Douglas, J. Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 1941, 50, 71–128. [Google Scholar] [CrossRef]
- Hojman, S.A. Symmetries of Lagrangians and of their equations of motion. J. Phys. A: Math. Gen. 1984, 17, 2399–2412. [Google Scholar] [CrossRef]
- Hojman, S.A. A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 1992, 25, 291–295. [Google Scholar] [CrossRef]
- Musielak, Z.E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 2008, 41, 055205. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Nikiciuk, T. A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Gen. 2010, 43, 175205. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Davachi, N.; Rosario-Franco, M. Special functions of mathematical physics: A Unified Lagrangian Formalism. Mathematics 2020, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Musielak, Z.E.; Davachi, N.; Rosario-Franco, M.J. Lagrangians, gauge transformations and Lie groups for semigroup of second-order differential equations. J. Appl. Math. 2020, 3170130. [Google Scholar]
- Alekseev, A.I.; Arbuzov, B.A. Classical Yang-Mills field theory with non-standard Lagrangians. Theor. Math. Phys. 1984, 59, 372–378. [Google Scholar] [CrossRef]
- Nucci, M.C.; Leach, P.G.L. Lagrangians galore. J. Math. Phys. 2007, 48, 123510. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Leach, P.G.L. Jacobi last multiplier and Lagrangians for multidimensional linear systems. J. Math. Phys. 2008, 49, 073517. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Leach, P.G.L. The Jacobi’s Last Multiplier and its applications in mechanics. Phys. Scr. 2008, 78, 065011. [Google Scholar] [CrossRef]
- Musielak, Z.E. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 2009, 42, 2645–2652. [Google Scholar] [CrossRef]
- Saha, A.; Talukdar, B. Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 2014, 73, 299–309. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators. App. Math. Lett. 2011, 24, 1647–1653. [Google Scholar]
- El-Nabulsi, R.A. Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 2013, 12, 273–291. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Fractional action cosmology with variable order parameter. Int. J. Theor. Phys. 2017, 56, 1159–1182. [Google Scholar] [CrossRef]
- Udwadia, F.E.; Cho, H. Lagrangians for damped linear multi-degree-of-freedom systems. J. Appl. Mech. 2013, 80, 041023. [Google Scholar] [CrossRef] [Green Version]
- Davachi, N.; Musielak, Z.E. Generalized non-standard Lagrangians. J. Undergrad. Rep. Phys. 2019, 29, 100004. [Google Scholar] [CrossRef] [Green Version]
- Kerner, E.H. Dynamical aspects of kinetics. Bull. Math. Biophysics. 1964, 26, 333–349. [Google Scholar] [CrossRef]
- Trubatch, S.L.; Franco, A. Canonical procedures for population dynamics. J. Theor. Biol. 1974, 48, 299–324. [Google Scholar] [CrossRef] [PubMed]
- Paine, G.H. The development of Lagrangians for biological models. Bull. Math. Biol. 1982, 44, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.C.; Tamizhmani, K.M. Lagrangians for biological models. J. Nonlinear Math. Phys. 2012, 19, 1250021. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Sanchini, G. Symmetries, Lagrangians and Conservation Laws of an Easter Island Population Model. Symmetry 2015, 7, 1613–1632. [Google Scholar] [CrossRef] [Green Version]
- Pham, D.T.; Musielak, Z.E. Lagrangian Formalism in Biology: I. Standard Lagrangians and their Role in Population Dynamics. arXiv 2022, arXiv:2203.13138. [Google Scholar]
- Lotka, A.J. Elements of Physical Biology. Nature 1925, 116, 461. [Google Scholar]
- Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, P.F. Correspondance mathématique et physique. Impr. d’H. Vandekerckhove 1838, 10, 113–121. [Google Scholar]
- Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. J. Philos. Trans. R. Soc. Lond. 1825, 115, 513–585. [Google Scholar]
- Collins, V.P.; Loeffler, R.K.; Tivey, H. Observations on growth rates of human tumors. Am. J. Roentg. 1956, 76, 988–1000. [Google Scholar]
- Kermack, F.; McKendrick, D. A Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1927, 115, 700–721. [Google Scholar]
- Krupka, D.; Krupkova, O.; Saunders, D. The Cartan form and its generalizations in the calculus of variations. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 631–654. [Google Scholar] [CrossRef]
- Olver, P.J.; Sivaloganathan, J. The structure of null Lagrangians. Nonlinearity 1988, 1, 389–398. [Google Scholar] [CrossRef]
- Crampin, M.; Saunders, D.J. On null Lagrangians. Diff. Geom. Appl. 2005, 22, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Vitolo, R. On different geometric formulations of Lagrangian formalism. Diff. Geom. Appl. 1999, 10, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Krupka, D.; Musilova, J. Trivial Lagrangians in field theory. Diff. Geom. Appl. 1998, 9, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Musielak, Z.E.; Watson, T.B. Gauge functions and Galilean invariance of Lagrangians. Phys. Lett. A 2020, 384, 126642. [Google Scholar] [CrossRef]
- Vestal, L.C.; Musielak, Z.E. Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions. Physics 2021, 3, 449–458. [Google Scholar] [CrossRef]
- Das, R.; Musielak, Z.E. General null Lagrangians and their novel role in classical dynamics. Phys. Scr. 2022, 97, 125213. [Google Scholar] [CrossRef]
- Das, R.; Musielak, Z.E. New role of null lagrangians in derivation of equations of motion for dynamical systems. Phys. Scr. 2023, 98, 045201. [Google Scholar] [CrossRef]
- Carinena, J.F.; Fernandez-Nunez, J. Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems. Symmetry 2022, 14, 2520. [Google Scholar] [CrossRef]
- Mathews, P.M.; Lakshmanan, M. On a unique nonlinear oscillator. Q. Appl. Math. 1974, 32, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, M.; Rajasekar, S. Nonlinear Dynamics: Integrability, Chaos and Patterns; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-62872-6. [Google Scholar] [CrossRef]
- Carinena, J.F.; Ranada, M.F.; Santander, M.; Senthilvelan, M. A non-linear oscillator with quasi-harmonic behaviour: Two- and n-dimensional oscillators. Nonlinearity 2004, 17, 1941–1963. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.L.; Del Valle, G.; Campos, I. A canonical treatment of some systems with friction. Eur. J. Phys. 2005, 26, 711–725. [Google Scholar] [CrossRef]
Population Models | Equations of Motion |
---|---|
Lotka–Volterra Model | |
Verhulst Model | |
Gompertz Model | |
Host–Parasite Model | |
SIR Model | |
Population Models | Null Lagrangians | Gauge Functions |
---|---|---|
Lotka–Volterra | ||
Verhulst | ||
Gompertz | ||
Host–Parasite | ||
SIR | t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.T.; Musielak, Z.E. Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics. Mathematics 2023, 11, 2671. https://doi.org/10.3390/math11122671
Pham DT, Musielak ZE. Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics. Mathematics. 2023; 11(12):2671. https://doi.org/10.3390/math11122671
Chicago/Turabian StylePham, Diana T., and Zdzislaw E. Musielak. 2023. "Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics" Mathematics 11, no. 12: 2671. https://doi.org/10.3390/math11122671
APA StylePham, D. T., & Musielak, Z. E. (2023). Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics. Mathematics, 11(12), 2671. https://doi.org/10.3390/math11122671