Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Orientation Distribution Function
2.2. Application of Orientation Distribution Function
2.3. Topological Approach
Algorithm 1: B0 and B1 matrixes construction |
Input: x, vector of dimension N Output: B0 and B1 matrixes for each xi for j in range [i, N] d(i,j) = distance(x(i), x(j)) by Equation (28) end for end for dUnique ← unique(d(i,j)) V, E ← null B0, B1 ← null k = 0 for i in range of dUnique j = findRows(d == dUnique(i)) V += number(j) E += findNumber(d == dUnique(i)) B0(j,i) ← dUnique(i) F = 2 − V − E if F > 0 k += 1 cycle = findCycle(B0 == dUnique(i)) D = findOverLap(cycle) by Equation (34) B1(k,:) ← D end if end for |
2.4. Research Design
2.5. Numerical Example
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, E.; Omairey, S.; Zysset, P. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model. J. Mech. Behav. Biomed. Mater. 2023, 139, 105660. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.; Zysset, P. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius. Biomech. Model Mechanobiol. 2023, 22, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Dalbosco, M.; Carniel, T.A.; Fancello, E.A.; Holzapfel, G.A. Multiscale numerical analyses of arterial tissue with embedded elements in the finite strain regime. Comput. Methods Appl. Mech. Eng. 2021, 381, 113844. [Google Scholar] [CrossRef]
- Bachmann, S.; Pahr, D.H.; Synek, A. A density-dependent target stimulus for inverse bone (re)modeling with homogenized finite element models. Ann. Biomed. Eng. 2023, 51, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Nagl, K.; Reisinger, A.; Pahr, D.H. The biomechanical behavior of 3D printed human femoral bones based on generic and patient-specific geometries. 3D Print. Med. 2022, 8, 35. [Google Scholar] [CrossRef]
- Silva-Henao, J.D.; Synek, A.; Pahr, D.H.; Reisinger, A.G. Selection of animal bone surrogate samples for orthopaedic screw testing based on human radius CT-derived bone morphology. Med. Eng. Phys. 2022, 103, 103786. [Google Scholar] [CrossRef]
- Sadyrin, E.V. Modeling the mechanism of reducing enamel mineral density in the vicinity of the fisure tip. Russ. J. Biomech. 2023, 27, 31–39. [Google Scholar]
- Maslov, L.B.; Dmitryuk, A.Y.; Zhmaylo, M.A.; Kovalenko, A.N. Study of the strength of a hip endoprosthesis made of polymeric material. Russ. J. Biomech. 2022, 26, 19–33. [Google Scholar]
- Casari, D.; Michler, J.; Zysset, P.; Schwiedrzik, J. Microtensile properties and failure mechanisms of cortical bone at the lamellar level. Acta Biomater. 2021, 120, 135–145. [Google Scholar] [CrossRef]
- Keaveny, T.M.; Clarke, B.L.; Cosman, F.; Orwoll, E.S.; Siris, E.S.; Khosla, S.; Bouxsein, M.L. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos. Int. 2020, 31, 1025–1048. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Tozzi, G. Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Front. Bioeng. Biotechnol. 2022, 10, 1010056. [Google Scholar] [CrossRef] [PubMed]
- Fleps, I.; Bahaloo, H.; Zysset, P.K.; Ferguson, S.J.; Palsson, H.; Helgason, B. Empirical relationships between bone density and ultimate strength: A literature review. J. Mech. Behav. Biomed. Mater. 2020, 110, 103866. [Google Scholar] [CrossRef] [PubMed]
- Varga, P.; Willie, B.M.; Stephan, C.; Kozloff, K.M.; Zysset, P.K. Finite element analysis of bone strength in osteogenesis imperfect. Bone 2020, 133, 115250. [Google Scholar] [CrossRef]
- Kichenko, A.A. Cancellous bone tissue remodelling: Mathematical modeling. Russ. J. Biomech. 2019, 23, 284–304. [Google Scholar]
- Nie, C.-X. Topological similarity of time-dependent objects. Nonlinear Dyn. Vol. 2023, 111, 481–492. [Google Scholar] [CrossRef]
- Offroy, M.; Duponchel, L. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal. Chim. Acta 2016, 910, 1–11. [Google Scholar] [CrossRef]
- Skaf, Y.; Laubenbacher, R. Topological data analysis in biomedicine: A review. J. Biomed. Inform. 2022, 130, 104082. [Google Scholar] [CrossRef]
- Vilenkin, N.J. Special functions and the theory of group representations. Transl. Math. Monogr. 1968, 22, 613. [Google Scholar]
- Bunge, G. Texture Analysis in Material Science: Mathematical Methods, 1st ed.; Butterworth & Co: London, UK, 1986; p. 595. [Google Scholar]
- Jones, M.N. Spherical Harmonics and Tensors for Classical Field Theory, 1st ed.; Research Studies Press: New York, NY, USA, 1985; p. 244. [Google Scholar]
- Kanatani, K. Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 1984, 2, 149–164. [Google Scholar]
- Harrigan, T.P.; Mann, R.W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 1984, 19, 761–767. [Google Scholar] [CrossRef]
- Tozeren, A.; Skalak, R. Does fabric tensor exist for a fabric? J. Mater. Sci. 1989, 24, 1700–1706. [Google Scholar] [CrossRef]
- Cowin, S.C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 1985, 4, 137–147. [Google Scholar] [CrossRef]
- Semenova, E.; Gerasimov, O.; Koroleva, E.; Ahmetov, N.; Baltina, T.; Sachenkov, O. Automatic processing and analysis of the quality healing of derma injury. Adv. Intell. Syst. Comput. 2019, 831, 107–113. [Google Scholar]
- Baidamshina, D.R.; Koroleva, V.A.; Trizna, E.Y.; Pankova, S.M.; Agafonova, M.N.; Chirkova, M.N.; Vasileva, O.S.; Akhmetov, N.; Shubina, V.V.; Porfiryev, A.G.; et al. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int. J. Biol. Macromol. 2020, 164, 4205–4217. [Google Scholar] [CrossRef] [PubMed]
- Cowin, S.C.; Mehrabadi, M.M. Anisotropic symmetries in linear elasticity. Appl. Mech. Rev. 1995, 48, 247–285. [Google Scholar] [CrossRef]
- Aktas, M.E.; Akbas, E.; Fatmaoui, A.E. Persistence homology of networks: Methods and applications. Appl. Netw. Sci. 2019, 4, 61. [Google Scholar] [CrossRef]
- Amezquita, E.J.; Quigley, M.Y.; Ophelders, T.; Munch, E.; Chitwood, D.H. The shape of things to come: Topological data analysis and biology, from molecules to organisms. Dev. Dyn. 2020, 249, 816–833. [Google Scholar] [CrossRef]
- Hylton, A.; Henselman-Petrusek, G.; Sang, J.; Short, R. Tuning the performance of a computational persistent homology package. Softw. Pract. Exp. 2019, 49, 885–905. [Google Scholar] [CrossRef]
- Attali, D.; Lieutier, A.; Salinas, D. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. In Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, SoCG ’11, Paris, France, 13–15 June 2011; pp. 501–509. [Google Scholar]
- Preti, G.; De Francisci Morales, G.; Bonchi, F. STruD: Truss decomposition of simplicial complexes. In Proceedings of the Web Conference 2021 (WWW ’21), Ljubljana, Slovenia, 19–23 April 2021; pp. 3408–3418. [Google Scholar]
- Basset, A.B. Classification of quartic curves. Nature 1902, 67, 80. [Google Scholar] [CrossRef]
- Bastien, G.; Rogalski, M. The periodic orbits of a dynamical system associated with a family of QRT-maps. Qual. Theory Dyn. Syst. 2020, 19, 57. [Google Scholar] [CrossRef]
- Pettigrew, J.; Roberts, J.A.G. Characterizing singular curves in parametrized families of biquadratics. J. Phys. A Math. Theor. 2008, 41, 115203. [Google Scholar] [CrossRef]
- Yaikova, V.V.; Gerasimov, O.V.; Fedyanin, A.O.; Zaytsev, M.A.; Baltin, M.E.; Baltina, T.V. and Sachenkov, O.A. Automation of Bone Tissue Histology. Front. Phys. 2019, 7, 91. [Google Scholar] [CrossRef]
Regression Parameter | Value |
---|---|
p1 | 5.2005 |
p0 | 0.6539 |
r2 | 0.104 |
p-value | 1.37 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, V.; Semenova, E.; Prunov, V.; Zamaliev, R.; Sachenkov, O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics 2023, 11, 2639. https://doi.org/10.3390/math11122639
Smirnova V, Semenova E, Prunov V, Zamaliev R, Sachenkov O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics. 2023; 11(12):2639. https://doi.org/10.3390/math11122639
Chicago/Turabian StyleSmirnova, Victoriya, Elena Semenova, Valeriy Prunov, Ruslan Zamaliev, and Oskar Sachenkov. 2023. "Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function" Mathematics 11, no. 12: 2639. https://doi.org/10.3390/math11122639
APA StyleSmirnova, V., Semenova, E., Prunov, V., Zamaliev, R., & Sachenkov, O. (2023). Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics, 11(12), 2639. https://doi.org/10.3390/math11122639