Distributed Disturbance Observer-Based Containment Control of Multi-Agent Systems via an Event-Triggered Approach
Abstract
1. Introduction
- (1)
- Compared with the works on the consensus [13], this work considers the containment control problem of linear MASs subject to external disturbances;
- (2)
- (3)
- The proposed disturbance observer-based event-triggered control uses the relative output information of each agent.
2. Preliminaries and Problem Formulation
2.1. Notations
2.2. Graph Theory
2.3. Problem Statement
3. Main Results
| Algorithm 1. Distributed Disturbance Observer-based Event-triggered Control Algorithm |
| Under Assumptions 1–4, for disturbance signals in (2), the distributed disturbance observer-based event-triggered controller (6) can be constructed using the following form: |
| (i) Solve the following Linear matrix inequality (LMI):
|
| (ii) Take a symmetric matrix , . |
| (iii) Select positive constants as the gains to be designed in the proof of Theorem 1. |
Feasibility Analysis
4. Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OlfatiSaber, R.; Murray, R. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 2004, 9, 1520–1533. [Google Scholar] [CrossRef]
- Li, Z.; Duan, Z.; Chen, G.; Lin, H. Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 1, 213–224. [Google Scholar]
- Hu, J.; Wu, Y.; Li, T.; Ghosh, B.K. Consensus control of general linear multi-agent systems with antagonistic interactions and communication noises. IEEE Trans. Autom. Control 2019, 5, 2122–2127. [Google Scholar] [CrossRef]
- Hu, J.; Hong, Y. Leader-following coordination of multi-agent systems with coupling time delays. Physica A 2007, 2, 853–863. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J. Observer-based output regulation of cooperative-competitive high-order multi-agent systems. J. Frankl. Inst. 2018, 10, 4111–4130. [Google Scholar] [CrossRef]
- Li, Z.; Ren, W.; Liu, X.; Fu, M. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust. Nonlinear. Control 2013, 5, 534–547. [Google Scholar] [CrossRef]
- Peng, Z.; Luo, R.; Hu, J.; Shi, K.; Nguang, S.K.; Ghosh, B.K. Optimal tracking control of nonlinear multi-agent systems using internal reinforce Q-learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, 8, 4043–4055. [Google Scholar] [CrossRef]
- Kou, L.; Chen, Z.; Xiang, J. Cooperative Fencing Control of Multiple Vehicles for a Moving Target With an Unknown Velocity. IEEE Trans. Autom. Control 2021, 2, 1008–1015. [Google Scholar] [CrossRef]
- Cao, Y.; Stuart, D.; Ren, W.; Meng, Z. Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments. IEEE Trans. Control Syst. Technol. 2011, 4, 929–938. [Google Scholar] [CrossRef]
- Haghshenas, H.; Badamchizadeh, M.A.; Baradarannia, M. Containment control of heterogeneous linear multi-agent systems. Automatica 2015, 54, 210–216. [Google Scholar] [CrossRef]
- Cheng, B.; Li, Z. Consensus disturbance rejection with event-triggered communications. J. Frankl. Inst. 2018, 2, 956–974. [Google Scholar] [CrossRef]
- Rong, L.; Liu, X.; Jiang, G.; Xu, S. Event-Driven Multiagent Consensus Disturbance Rejection With Input Uncertainties via Adaptive Protocols. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 5, 2911–2919. [Google Scholar] [CrossRef]
- Ding, Z. Consensus Disturbance Rejection with Disturbance Observers. IEEE Trans. Autom. Control 2015, 9, 5829–5837. [Google Scholar] [CrossRef]
- Han, T.; Li, J.; Guan, Z.; Cai, C.; Zhang, D.; He, D. Containment control of multi-agent systems via a disturbance observer-based approach. J. Frankl. Inst. 2019, 5, 2919–2933. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Xiang, L.; Liang, Q.; Shi, K. Finite-Time Output Regulation of Linear Heterogeneous Multi-Agent Systems. IEEE Trans. Circuits Syst. II Express. Brief. 2022, 3, 1248–1252. [Google Scholar] [CrossRef]
- Hu, W.; Liu, L. Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control. IEEE Trans. Cybern 2016, 5, 105–116. [Google Scholar] [CrossRef]
- Wang, H.; Yu, W.; Ren, W.; Lu, J. Distributed adaptive finite-time consensus for second-order multiagent systems with mismatched disturbances under directed networks. IEEE Trans. Cybern 2019, 3, 1347–1358. [Google Scholar] [CrossRef]
- Wang, H.; Ren, W.; Yu, W.; Zhang, D. Fully distributed consensus control for a class of disturbed second-order multi-agent systems with directed networks. Automatica 2021, 132, 109816. [Google Scholar] [CrossRef]
- Wei, X.; Yu, W.; Wang, H.; Yao, Y.; Mei, F. An observer-based fixed-time consensus control for second-order multi-agent systems with disturbances. IEEE Trans. Circuits Syst. II Express. Brief. 2019, 2, 247–251. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Wang, W. Distributed dynamic average consensus for nonlinear multi-agent systems in the presence of external disturbances over a directed graph. Inform. Sci. 2019, 479, 40–54. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Zhang, K.; Cai, Y. Observer-Based Output Feedback Event-Triggered Adaptive Control for Linear Multiagent Systems Under Switching Topologies. IEEE Trans. Neural Netw. Learn. Syst. 2021, 12, 7161–7171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, G. Event-driven observer-based output feedback control for linear systems. Automatica 2014, 7, 1852–1859. [Google Scholar] [CrossRef]
- Dimarogonas, D.V.; Frazzoli, E.; Johansson, K.H. Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 2012, 5, 1291–1297. [Google Scholar] [CrossRef]
- Hu, W.; Liu, L.; Feng, G. Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Trans. Cybern 2016, 1, 148–157. [Google Scholar]
- Cheng, T.H.; Kan, Z.; Klotz, J.R.; Shea, J.M.; Dixon, W.E. Event-triggered control of multi-agent systems for fixed and time-varying network topologies. IEEE Trans. Autom. Control 2017, 10, 5365–5371. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, G.; Wang, Y.; Song, C. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica 2013, 2, 671–675. [Google Scholar] [CrossRef]
- Seyboth, G.S.; Dimarogonas, D.V.; Johansson, K.H. Event-based broadcasting for multi-agent average consensus. Automatica 2013, 1, 245–252. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.; Feng, G.; Wang, Y. Self-triggered consensus for multi-agent systems with zeno-free triggers. IEEE Trans. Autom. Control 2015, 5, 2779–2784. [Google Scholar] [CrossRef]
- Deng, C.; Wen, C.; Huang, J.; Zhang, X.; Zou, Y. Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication. IEEE Trans. Autom. Control 2021, 5, 2669–2676. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Q.; Ge, X.; Ning, B.; Zhang, B. Sampled-data control systems with non-uniform sampling: A survey of methods and trends. Annu. Rev. Control 2023. [CrossRef]
- Qian, Y.; Liu, L.; Feng, G. Output Consensus of Heterogeneous Linear Multi-Agent Systems with Adaptive Event-Triggered Control. IEEE Trans. Autom. Control 2018, 6, 2606–2613. [Google Scholar] [CrossRef]
- Peng, Z.; Luo, R.; Hu, J.; Shi, K.; Ghosh, B.K. Distibuted optimal tracking control of discrete-time multi-agent systems via event-triggered reinforcement learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 9, 3689–3700. [Google Scholar] [CrossRef]
- Jian, L.; Hu, J.; Wang, J.; Shi, K.; Peng, Z.; Yang, Y.; Huang, J. Distributed functional observer-based event-triggered containment control of multi-agent systems. Int. J. Control. Autom. Syst. 2020, 5, 1094–1102. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, F.; Ma, J. Model-based edge-event-triggered containment control under directed topologies. IEEE Trans. Cybern 2018, 7, 2556–2567. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, W.X. Adaptive tracking control of leader-follower systems with unknown dynamics and partial measurements. Automatica 2014, 5, 1416–1423. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Cai, Y.; Li, W. Containment control of general linear multi-agent systems by event-triggered control mechanisms. Neurocomputing 2020, 7, 263–274. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, L.; Feng, G. Distributed event-triggered adaptive control for consensus of linear multi-agent systems with external disturbances. IEEE Trans. Cybern 2018, 5, 2197–2208. [Google Scholar] [CrossRef]
- Li, Z.; Duan, Z.; Ren, W.; Feng, G. Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers. Int. J. Robust. Nonlinear. Control 2019, 5, 2101–2121. [Google Scholar] [CrossRef]
- Miao, G.; Cao, J.; Alsaedi, A.; Alsaadi, F.E. Event-triggered containment control for multi-agent systems with constant time delays. J. Frankl. Inst. 2017, 15, 6956–6977. [Google Scholar] [CrossRef]
- Hu, W.; Liu, L.; Feng, G. Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy. IEEE Trans. Cybern 2017, 8, 1914–1924. [Google Scholar] [CrossRef]
- Jeong, J.; Lim, Y.; Parivallal, A. An asymmetric Lyapunov-Krasovskii functional approach for event-triggered consensus of multi-agent systems with deception attacks. Appl. Math. Comput. 2023, 439, 127584. [Google Scholar] [CrossRef]
- Kazemy, A.; Lam, J.; Zhang, X. Event-Triggered Output Feedback Synchronization of Master–Slave Neural Networks Under Deception Attacks. IEEE Trans. Neural Netw. Learn Syst. 2022, 33, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Kavikumar, R.; Kwon, O.M.; Lee, S.H.; Lee, S.; Sakthivel, R. Event-Triggered Input–Output Finite-Time Stabilization for IT2 Fuzzy Systems Under Deception Attacks. IEEE Trans. Fuzzy Syst. 2023, 4, 1139–1151. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, L.; Lv, Y.; Li, R.; Kou, L.; Zhang, G. Distributed Disturbance Observer-Based Containment Control of Multi-Agent Systems via an Event-Triggered Approach. Mathematics 2023, 11, 2363. https://doi.org/10.3390/math11102363
Jian L, Lv Y, Li R, Kou L, Zhang G. Distributed Disturbance Observer-Based Containment Control of Multi-Agent Systems via an Event-Triggered Approach. Mathematics. 2023; 11(10):2363. https://doi.org/10.3390/math11102363
Chicago/Turabian StyleJian, Long, Yongfeng Lv, Rong Li, Liwei Kou, and Gengwu Zhang. 2023. "Distributed Disturbance Observer-Based Containment Control of Multi-Agent Systems via an Event-Triggered Approach" Mathematics 11, no. 10: 2363. https://doi.org/10.3390/math11102363
APA StyleJian, L., Lv, Y., Li, R., Kou, L., & Zhang, G. (2023). Distributed Disturbance Observer-Based Containment Control of Multi-Agent Systems via an Event-Triggered Approach. Mathematics, 11(10), 2363. https://doi.org/10.3390/math11102363

