Starlikeness Associated with the Van Der Pol Numbers
Abstract
1. Introduction and Preliminaries
2. Inclusion Results
- (i)
- for
- (ii)
- for
- (iii)
- , where
3. Radius Problems
4. Coefficient Estimates
- I.
- Firstly, we prove that interior of has no critical point.
- II.
- Next we obtain the maxima inside the six faces of .
- III.
- On the vertices of , we have
- IV.
- Lastly, we find points of maxima of on the 12 edges of .wherewhereSince all cases have been dealt with, we have the required result. The result is sharp for given in (23), which is equivalent to choosing and which from (10), gives □
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Pol, B. Smoothing and unsmoothing in M. Kac. In Probability and Related Topics in Physical Sciences; Amer Mathematical Society: New York, NY, USA, 1957; pp. 223–235. [Google Scholar]
- Howar, F.T. The van der Pol numbers and a related sequence of rational numbers. Math. Nachr. 1969, 42, 89–102. [Google Scholar] [CrossRef]
- Carlitz, L. A sequence of integers related to the Bessel functions. Proc. Amer. Math. Soc. 1963, 14, 1–9. [Google Scholar] [CrossRef]
- Kishore, N. The Rayleigh function. Proc. Amer. Math. Soc. 1963, 14, 527–533. [Google Scholar] [CrossRef]
- Kishore, N. The Rayleigh polynomial. Proc. Amer. Math.Soc. 1964, 15, 911–917. [Google Scholar] [CrossRef]
- Howar, F.T. Factors and roots of the van der Pol polynomials. Proc. Amer. Math. Soc. 1975, 55, 1–8. [Google Scholar] [CrossRef]
- Gustafsson, B.; Vasilev, A. Conformal and Potential Analysis in Hele-Shaw Cells; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bernstein, S.; Bouchot, J.L.; Reinhardt, M.; Heise, B. Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications. In Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics; Hitzer, E., Sangwine, S., Eds.; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polonici Math. 1971, 23, 159–177. [Google Scholar] [CrossRef]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. (Ser. 2) 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech.Rzeszowskiej Mat 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Intern. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On coefficient estimates for a certain class of starlike functions. Haceppt. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate of starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
- Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limacon. AIP Conf. Proc. 2018, 1974, 030023. [Google Scholar]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Technol. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math.Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
- Raza, M.; Binyamin, M.A.; Riaz, A. A study of convex and related functions in the perspective of geometric function theory. In Inequalities with Generalized Convex Functions and Applications; Awan, M.U., Cristescu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Ali, R.M.; Jain, N.K.; Ravichandran, V. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 2012, 128, 6557–6565. [Google Scholar] [CrossRef]
- Shah, G.M. On the univalence of some analytic functions. Pac. J. Math. 1972, 43, 239–250. [Google Scholar] [CrossRef]
- Ravichandran, V.; Rønning, F.R.; Shanmugam, T.N. Radius of convexity and radius of starlikeness for some classes of analytic functions. Complex Var. Theory Appl. 1997, 33, 265–280. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.; Srivastava, H.M.; Xin, Q.; Tchier, F.; Malik, S.N.; Arif, M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics 2023, 11, 2231. https://doi.org/10.3390/math11102231
Raza M, Srivastava HM, Xin Q, Tchier F, Malik SN, Arif M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics. 2023; 11(10):2231. https://doi.org/10.3390/math11102231
Chicago/Turabian StyleRaza, Mohsan, Hari Mohan Srivastava, Qin Xin, Fairouz Tchier, Sarfraz Nawaz Malik, and Muhammad Arif. 2023. "Starlikeness Associated with the Van Der Pol Numbers" Mathematics 11, no. 10: 2231. https://doi.org/10.3390/math11102231
APA StyleRaza, M., Srivastava, H. M., Xin, Q., Tchier, F., Malik, S. N., & Arif, M. (2023). Starlikeness Associated with the Van Der Pol Numbers. Mathematics, 11(10), 2231. https://doi.org/10.3390/math11102231

