Results on Linear Operators Associated with Pascal Distribution Series for a Certain Class of Normalized Analytic Functions
Abstract
:1. Introduction
- .
2. Preliminary Results
3. Main Results
3.1. Results on Convolution Operator
3.2. Results on Integral Operator
4. Special Cases
4.1. Corollaries for Convolution Operator
4.2. Corollaries for Integral Operator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar] [CrossRef]
- Lashin, A.M.Y.; Badghaish, A.O.; Algethami, B.M. Inclusion relations for some classes of analytic functions involving Pascal distribution series. J. Inequal. Appl. 2022, 2022, 161. [Google Scholar] [CrossRef]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar]
- Porwal, S. Mapping properties of certain subclasses of analytic functions associated with generalized distribution series. Appl. Math. E-Notes 2020, 20, 39–45. [Google Scholar]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Wani, L.A.; Swaminathan, A. Inclusion properties of hypergeometric type functions and related integral transforms. Stud. Univ. Babes-Bolyai Math. 2020, 65, 211–227. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Kanas, S.; Wisinowaska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Bharati, R.; Parvatham, R.; Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 1997, 28, 17–32. [Google Scholar] [CrossRef]
- Gangadharan, A.; Shanmugam, T.N.; Srivastava, H.M. Generalized hypergeometric functions associated with K-uniformly convex functions. Comput. Math. Appl. 2002, 44, 1515–1526. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wisinowaska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Spacek, L. Contribution à la theorie des fonctions univalents. Cas. Pro Pest. Mat. Fys. 1932, 62, 12–19. [Google Scholar]
- Murugusundaramoorthy, G. Subordination results for spiral-like functions associated with the Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2012, 23, 97–103. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Certain subclasses of Spiral-like univalent functions related with Pascal distribution series. Moroc. J. Pure Appl. Anal. 2021, 7, 312–323. [Google Scholar] [CrossRef]
- Libera, R.J. Univalent α-Spiral Functions. Canadian J. Math. 1967, 19, 449–456. [Google Scholar] [CrossRef]
- Selvaraj, C.; Geetha, R. On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions. Int. J. Contemp. Math. Sci. 2010, 5, 1845–1854. [Google Scholar]
- Ravichandran, V.; Selvaraj, C.; Rajalakshmi, R. On uniformly convex spiral functions and uniformly spirallike functions. Soochow J. Math. 2003, 29, 393–406. [Google Scholar]
- Thulasiram, T.; Suchithra, K.; Sudharsan, T.V.; Murugusundaramoorthy, G. Some inclusion results associated with certain subclass of analytic functions involving Hohlov operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2014, 108, 711–720. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Viyaja, K.; Porwal, S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacet. J. Math. Stat. 2016, 45, 1101–1107. [Google Scholar] [CrossRef]
- Giri, M.K.; Raghavendar, K. Inclusion results on hypergeometric functions in a class of analytic functions associated with linear operators. Contemp. Math. 2024, 5, 1738–1757. [Google Scholar] [CrossRef]
- Carleson, B.C.; Sha§er, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Mostafa, A.O. A study on starlike and convex properties for hypergeometric functions. J. Inequal. Pure Appl. Math. 2009, 10, 1–16. [Google Scholar]
- Swaminathan, A. Certain sufficiency conditions on Gaussian hypergeometric functions. J. Inequal. Pure Appl. Math. 2004, 5, 1–10. [Google Scholar]
- Raghavendar, K.; Swaminathan, A. Integral transforms of functions to be in certain class defined by the combination of starlike and convex functions. Comput. Math. Appl. 2012, 63, 1296–1304. [Google Scholar] [CrossRef]
- Bohra, N.; Ravichandran, V. On confluent hypergeometric functions and generalized Bessel functions. Anal. Math. 2017, 43, 533–545. [Google Scholar] [CrossRef]
- Miller, S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Raina, R.K. On univalent and starlike Wright’s hypergeometric functions. Rend. Sem. Mat. Univ. Padova 1996, 95, 11–22. [Google Scholar]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1994, pp. 23–69. [Google Scholar] [CrossRef]
- Mondal, S.R.; Giri, M.K.; Kondooru, R. Sufficient conditions for linear operators related to confluent hypergeometric function and generalized Bessel function of the first kind to belong to a certain class of analytic functions. Symmetry 2024, 16, 662. [Google Scholar] [CrossRef]
- Porwal, S.; Gupta, A. Some properties of convolution for hypergeometric distribution type series on certain analytic univalent functions. Acta Univ. Apulensis Math. Inform. 2018, 56, 69–80. [Google Scholar] [CrossRef]
- Porwal, S.; Kumar, S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions. Afr. Mat. 2017, 28, 1–8. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of a Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. Available online: https://eudoxuspress.com/index.php/pub/issue/view/29/28 (accessed on 30 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.R.; Giri, M.K.; Kondooru, R. Results on Linear Operators Associated with Pascal Distribution Series for a Certain Class of Normalized Analytic Functions. Mathematics 2025, 13, 1053. https://doi.org/10.3390/math13071053
Mondal SR, Giri MK, Kondooru R. Results on Linear Operators Associated with Pascal Distribution Series for a Certain Class of Normalized Analytic Functions. Mathematics. 2025; 13(7):1053. https://doi.org/10.3390/math13071053
Chicago/Turabian StyleMondal, Saiful R., Manas Kumar Giri, and Raghavendar Kondooru. 2025. "Results on Linear Operators Associated with Pascal Distribution Series for a Certain Class of Normalized Analytic Functions" Mathematics 13, no. 7: 1053. https://doi.org/10.3390/math13071053
APA StyleMondal, S. R., Giri, M. K., & Kondooru, R. (2025). Results on Linear Operators Associated with Pascal Distribution Series for a Certain Class of Normalized Analytic Functions. Mathematics, 13(7), 1053. https://doi.org/10.3390/math13071053