Starlikeness Associated with the Van Der Pol Numbers
Abstract
:1. Introduction and Preliminaries
2. Inclusion Results
- (i)
- for
- (ii)
- for
- (iii)
- , where
3. Radius Problems
4. Coefficient Estimates
- I.
- Firstly, we prove that interior of has no critical point.
- II.
- Next we obtain the maxima inside the six faces of .
- III.
- On the vertices of , we have
- IV.
- Lastly, we find points of maxima of on the 12 edges of .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Pol, B. Smoothing and unsmoothing in M. Kac. In Probability and Related Topics in Physical Sciences; Amer Mathematical Society: New York, NY, USA, 1957; pp. 223–235. [Google Scholar]
- Howar, F.T. The van der Pol numbers and a related sequence of rational numbers. Math. Nachr. 1969, 42, 89–102. [Google Scholar] [CrossRef]
- Carlitz, L. A sequence of integers related to the Bessel functions. Proc. Amer. Math. Soc. 1963, 14, 1–9. [Google Scholar] [CrossRef]
- Kishore, N. The Rayleigh function. Proc. Amer. Math. Soc. 1963, 14, 527–533. [Google Scholar] [CrossRef]
- Kishore, N. The Rayleigh polynomial. Proc. Amer. Math.Soc. 1964, 15, 911–917. [Google Scholar] [CrossRef]
- Howar, F.T. Factors and roots of the van der Pol polynomials. Proc. Amer. Math. Soc. 1975, 55, 1–8. [Google Scholar] [CrossRef]
- Gustafsson, B.; Vasilev, A. Conformal and Potential Analysis in Hele-Shaw Cells; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bernstein, S.; Bouchot, J.L.; Reinhardt, M.; Heise, B. Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications. In Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics; Hitzer, E., Sangwine, S., Eds.; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polonici Math. 1971, 23, 159–177. [Google Scholar] [CrossRef]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. (Ser. 2) 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech.Rzeszowskiej Mat 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Intern. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On coefficient estimates for a certain class of starlike functions. Haceppt. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate of starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
- Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limacon. AIP Conf. Proc. 2018, 1974, 030023. [Google Scholar]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Technol. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math.Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
- Raza, M.; Binyamin, M.A.; Riaz, A. A study of convex and related functions in the perspective of geometric function theory. In Inequalities with Generalized Convex Functions and Applications; Awan, M.U., Cristescu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Ali, R.M.; Jain, N.K.; Ravichandran, V. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 2012, 128, 6557–6565. [Google Scholar] [CrossRef]
- Shah, G.M. On the univalence of some analytic functions. Pac. J. Math. 1972, 43, 239–250. [Google Scholar] [CrossRef]
- Ravichandran, V.; Rønning, F.R.; Shanmugam, T.N. Radius of convexity and radius of starlikeness for some classes of analytic functions. Complex Var. Theory Appl. 1997, 33, 265–280. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.; Srivastava, H.M.; Xin, Q.; Tchier, F.; Malik, S.N.; Arif, M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics 2023, 11, 2231. https://doi.org/10.3390/math11102231
Raza M, Srivastava HM, Xin Q, Tchier F, Malik SN, Arif M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics. 2023; 11(10):2231. https://doi.org/10.3390/math11102231
Chicago/Turabian StyleRaza, Mohsan, Hari Mohan Srivastava, Qin Xin, Fairouz Tchier, Sarfraz Nawaz Malik, and Muhammad Arif. 2023. "Starlikeness Associated with the Van Der Pol Numbers" Mathematics 11, no. 10: 2231. https://doi.org/10.3390/math11102231
APA StyleRaza, M., Srivastava, H. M., Xin, Q., Tchier, F., Malik, S. N., & Arif, M. (2023). Starlikeness Associated with the Van Der Pol Numbers. Mathematics, 11(10), 2231. https://doi.org/10.3390/math11102231