Next Article in Journal
High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method
Previous Article in Journal
Left (Right) Regular Elements of Some Transformation Semigroups
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Starlikeness Associated with the Van Der Pol Numbers

1
Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
2
Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
3
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
4
Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
5
Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
6
Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
7
Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark
8
Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
9
Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
10
Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(10), 2231; https://doi.org/10.3390/math11102231
Submission received: 16 April 2023 / Revised: 6 May 2023 / Accepted: 8 May 2023 / Published: 10 May 2023
(This article belongs to the Special Issue Advances on Complex Analysis, 2nd Edition)

Abstract

:
In this paper, we define a subclass of starlike functions associated with the Van der Pol numbers. For this class, we derive structural formula, radius of starlikeness of order α , strong starlikeness, and some inclusion results. We also study radii problems for various classes of analytic functions. Furthermore, we investigate some coefficient-related problems which include the sharp initial coefficient bounds and sharp bounds on Hankel determinants of order two and three.

1. Introduction and Preliminaries

Van der Pol [1] studied the sequence V 0 , V 1 , V 2 , by using
ψ V ( ς ) = ς 3 6 e ς ς 2 + ς + 2 = m = 0 V m m ! ς m ,
where the numbers V m were later named Van der Pol numbers. These numbers are used in unsmoothing a smoothed function of three variables. The Bernoulli numbers are analogous to V m for functions of one variable. The first few of these numbers are V 0 = 1 ,   V 1 = 1 2 ,   V 2 = 1 5 , V 3 = 1 120 ; see [2]. The numbers V m can be related with the Rayleigh function; see [2]. The Rayleigh functions can be represented in terms of the zeros of the Bessel function; see [3,4,5]. Howard [6] showed that Euler and Bernoulli polynomials have identical properties to the Van der Pol polynomials.
Geometric function theory is the study of the geometric properties of analytic functions in D = ς : ς < 1 , ς C . The Riemann mapping theorem is considered as the cornerstone of the theory. The analytic and univalent functions and their generalizations have various applications, such as fluid mechanics [7], image processing, and signal processing [8], while conformal mappings (locally univalent functions) are very useful in cryptography.
Now we give some notions of the theory which will be helpful in our study.
Denote by A m the class of functions k which are analytic and have the expansion of the form k ς = ς + d m + 1 ς 2 + d m + 2 ς 3 + in D = ς : ς < 1 , ς C . The class A 1 = A is well-known. A function k A is given as
k ( ς ) = ς + m = 2 d m ς m , ς D .
Let S represent a class of univalent functions in A . We denote by B a family of self maps ω , analytic (holomorphic) in D with ω 0 = 0 . The function ω with such properties is known as a Schwarz function. Consider that functions k and g are both analytic (holomorphic) in D . Then we write mathematically f g , read as f is subordinated to g such that k ( ς ) = g ω ( ς ) for ω B and ς D . If g is univalent (one-to-one) with k 0 = g 0 , then k D g D .
This concept is very useful in studying various problems in function theory. Ma and Minda [9] beautifully utilized this concept to unify various classes of starlike and convex functions. These are defined analytically as S * ( ψ ) : = k A : ς k ( ς ) / k ( ς ) ψ ( ς ) and C ( ψ ) : = k A : 1 + ς k ( ς ) / k ( ς ) ψ ( ς ) , respectively. The analytic and univalent function ψ satisfies ψ 0 = 1 and R e ψ ( ς ) > 0 , ς D and ψ D is a convex set in C . We see that the class S * ( ψ ) generalizes many classes. Some are given as follows:
  • S * = S * 1 + ς 1 ς .
  • S * [ A , B ] : = S * 1 + A ς 1 + B ς , 1 B < A 1 , see [10].
  • S * ( α ) : = . S * 1 + ( 1 2 α ) ς 1 ς , 0 α < 1 , see [11].
  • S s * : = S * 1 + sin ( ς ) , see [12].
  • S L * : = S * ( 1 + ς ) , see [13].
  • S R L * : = S * 2 ( 2 1 ) 1 ς 1 + 2 ( 2 1 ) ς , see [14].
  • S C * : = S * 1 + 4 ς 3 + 2 ς 2 3 , see [15].
  • S e * : = S * e ς , see [16].
  • S cos * : = S * cos ς , see [17].
  • S l * : = S * ( 1 + ς 2 + ς ) , see [18].
  • BS α : = S * ( 1 + ς 1 α ς 2 ) , 0 α 1 , see [19].
  • S lim * : = S * 1 + 2 ς + ς 2 2 , see [20,21].
The geometry of analytic functions related with some familiar sequences of numbers has been explored by some researchers working in the theory. The class SL related with Fibonacci numbers was introduced and investigated by Sokół [22]. The class S B * related with Bell numbers was introduced by Cho et al. [23] and Kumar et al. [24], whereas functions related with generalized Telephone numbers were utilized by Deniz [25] to introduce a subclass of S * . The generating function for Euler numbers was recently used to introduce a subclass of starlike functions (see [26]), while the generating function for Bernoulli numbers is considered in [27] to investigate a subclass of S * .
Motivated by the above contributions, we study starlike functions related with Van der Pol numbers.
The function ψ V ( ς ) defined in (1) is analytic in D and maps D onto a convex set and R e ψ V ( ς ) > 0 . We define the class S V * of starlike functions by using the generating function of Van der Pol numbers as follows:
S V * : = k A : ς k ( ς ) k ( ς ) ς 3 6 e ς ς 2 + ς + 2 .
From the above definition, k S V * if and only if h ( ς ) ψ V ( ς ) = ς 3 6 e ς ς 2 + ς + 2 and
k ( ς ) = ς e x p 0 ς h ( u ) 1 u d u ,
where h is analytic in D . The set S V * , is non-empty; we present some examples for functions in it. Consider h i : D C , i = 1 , 2 , 3 , 4 given by
h 1 ς = 1 + 2 5 ς , h 2 ς = 4 + 2 ς 4 + ς , h 3 ς = 1 + cos 1 2 ς , h 4 ς = e ς 3 .
The function ψ V ( ς ) is univalent in D . Furthermore, h i 0 = h 0 ( 0 ) = 1 and h i D h 0 ( D ) , i = 1 , 2 , 3 , 4 . This implies h i ς ψ V ( ς ) . Therefore, from (3), we obtain the functions k i S V * , i = 1 , 2 , 3 , 4 with k i 0 = k i ( 0 ) 1 = 0 to every h i , respectively, as follows:
k 1 ς = ς e 2 ς 5 , k 2 ς = ς + ς 2 4 , k 3 ς = ς e cos 1 2 ς , k 4 ς = ς e x p 0 ς e t 3 1 t d t .
We have the following layout of our work.
In Section 2, we find the growth result and some inclusion results for the class S V * . In Section 3, we give sharp radii problems for various classes of analytic functions. In the last section, we derive coefficient bounds and Hankel determinants for the class S V * .

2. Inclusion Results

Firstly, we study the order of starlikeness and strong starlikeness for the class S V * .
Lemma 1. 
Let ψ V ( ς ) = ς 3 6 e ς ς 2 + ς + 2 . Then for ς = t e i φ , t 0 , 1 ,
min ς = t R e ψ V ( ς ) = ψ V ( t ) = min ς = t ψ V ( ς )
and
max ς = t R e ψ V ( ς ) = ψ V ( t ) .
Proof. 
For φ 0 , 2 π , x = t cos φ and y = t sin φ ; we have R e ψ V ( ς ) = u r , where
u = t 3 cos 3 φ e x t cos y + φ 2 y + x + 2 + t 3 sin 3 φ e x t sin y + φ 2 sin y + y ,
r = 6 e x t cos y + φ 2 y + x + 2 2 + 6 e x t sin y + φ 2 y + y 2
Let g φ = u r . Then g φ = 0 has 0 and π roots. Furthermore, we see that g 0 > 0 and g π < 0 for t 0 , 1 . Therefore, g has minima at φ = 0 and maxima at φ = π . Hence,
min ς = t R e ψ V ( ς ) = ψ V t = t 3 6 t e t + 1 2 e t 1
and
max ς = t R e ψ V ς = ψ V t = t 3 6 t e t + 1 2 e t 1 .
Similarly,
ψ V ς 2 = u r 2 + v r 2 = g 1 φ ,
where
v = t 3 cos 3 φ e x t sin t sin φ + φ 2 sin y + y + t 3 sin 3 φ e x t cos y + φ 2 cos y + x + 2
and u and r are given in (4) and (5), respectively. Some computations show that g 1 has a minimum value at φ = 0 . Hence, we conclude that
min ς = t ψ V ς = ψ V t = t 3 6 t e t + 1 2 e t 1 .
Theorem 1. 
The class S V * satisfies the following relations:
(i) 
S V * S * ( α ) , for 0 α 1 6 ( 3 e ) .
(ii) 
S V * M ( α ) for α e 6 ( 3 e ) ,
(iii) 
S V * SS * ( β ) , where β 2 h φ 1 / π 0.3199041635 ,
where φ 1 4.811266810 is the root of the equation h ( φ ) = 0 and h is defined in (7).
Proof. (i) Let  k S V * .  Then, it is easy to see that
ς k ( ς ) k ( ς ) ς 3 6 e ς ς 2 + ς + 2 .
Therefore,
min | ς | = 1 R e ς 3 6 e ς ς 2 + ς + 2 < R e ς k ς k ( ς ) < max | ς | = 1 R e ς 3 6 e ς ς 2 + ς + 2 .
Hence, by using Lemma 1, we conclude that
1 6 ( 3 e ) < R e ς k ς k ( ς ) < e 6 ( 3 e ) .
Thus, S V * S * ( α ) , where 0 α 1 6 ( 3 e ) .
(ii) Result follows from .
(iii) Let k S V * . Then
arg ς k ( ς ) k ( ς ) < max ς = 1 arg ς 3 6 e ς ς 2 + ς + 2 = max ς = 1 h φ ,
where
h ( φ ) = tan 1 t 3 cos 3 φ 2 sin y + e x t sin y + φ + y + t 3 sin 3 φ 2 cos y + e x t cos y + φ + x + 2 t 3 cos 3 φ 2 cos y + e x t cos y + φ + x + 2 + t 3 sin 3 φ 2 sin y + e x t sin y + φ + y .
It is easy to see that h ( φ ) = 0 has two roots in [ 0 , 2 π ] , namely
φ 0 = 1.471918497 and φ 1 = 4.811266810 .
Furthermore, we see that h ( φ 1 ) = 0.5177687016 . Hence, max h ( φ ) = h ( φ 1 ) = 0.5025042849 . Thus,
k SS * 2 π h φ 1 .
Theorem 2. 
The S * ( α ) -radii, for S V * is t 0 , where t 0 is the solution of t 3 6 α e t t 2 + t + 2 = 0 and 1 / 6 ( 3 e ) α < 1 .
Proof. 
Let k S V * . Then from Lemma 1, we can write
t 3 6 e t t 2 + t + 2 R e ς k ( ς ) k ( ς ) t 3 6 e t t + 2 + t 2 .
Hence,
R e ς k ( ς ) k ( ς ) t 3 6 e t t 2 + t + 2 α
for t 3 6 α e t t 2 + t + 2 = 0 > 0 . Thus, the radius of S * ( α ) , for S V * is the smallest root t 0 ( 0 , 1 ) of t 3 6 α e t t 2 + t + 2 = 0 .

3. Radius Problems

Consider the class
P m α : = p ( ς ) = 1 + k = m c m ς m : R e p ( ς ) > 0 .
Furthermore, P m : = P m ( 0 ) . Let
S V , m * : = A m S V * , S m * ( α ) : = A m S * ( α ) .
Ali et al. [28] investigated the class S m : = { k A m : k ( ς ) ς P m } . Now consider the following useful results to prove our results.
Lemma 2 
([29]). If p P m ( α ) , then, for ς = t ,
ς p ( ς ) p ( ς ) 2 ( 1 α ) m t m ( 1 t m ) ( 1 + ( 1 2 α ) t m ) .
Lemma 3 
([30]). If p P m ( α ) , then, for ς = t ,
p ( ς ) ( 1 + ( 1 2 α ) ) t 2 m 1 t 2 m 2 ( 1 α ) t m 1 t 2 m .
The main purpose of the next result is to obtain the disks of maximum radius and minimum radius centered at ( a , 0 ) such that Δ V : = ψ V ( D ) , where ψ V ( ς ) = ς 3 6 ς e ς + 1 2 e ς 1 is contained in the smallest disk and contains the largest disk.
Lemma 4. 
Let 1 6 3 e < a < e 6 3 e . Then, the following inclusions hold:
{ ω C : ω a < t a } Δ V { ω : ω a < T a } ,
where
t a = a 1 6 3 e 1 6 3 e < a a , e 6 3 e a , a a < e 6 3 e ,
and
T a = e 6 3 e a 1 6 3 e < a a * , h φ a , a * < a a * * , a 1 6 3 e , a * * < a < e 6 3 e ,
where φ a is the zero of h φ . The function h is given by (8) with a 1.099999 , a * 1.0683509192 , and a * * 1.1944463972 .
Proof. 
Let ψ V ς = ς 3 6 e ς ς 2 + ς + 2 . Then
ψ V e i φ = e 3 i φ 6 e e i φ e i φ 2 + e i φ + 2
represents the boundary of ψ V D . Let x = cos φ and y = sin φ . Then the square of the distance of ( a , 0 ) to the boundary of Δ V is given by the function
h φ = u 1 r 1 a 2 + v 1 r 1 2 ,
where
u 1 = cos 3 φ e x 2 cos y + cos y + φ + x + 2 + sin 3 φ 2 sin y + e x sin y + φ + y , v 1 = cos 3 φ 2 sin y + e x sin y + φ + y + sin 3 φ 2 cos y + e x cos y + φ + x + 2 , r 1 = 6 2 cos y + e x cos y + φ + x + 2 2 + 6 2 sin y + e x sin y + φ + y 2 .
To prove that ω a < t a is a disk with maximum radius contained in Δ V , we have to show that min 0 φ π h ( φ ) = t a . Since h ( φ ) = h ( φ ) , we consider 0 φ π only. We suppose that
1 6 3 e < a a * ,
where a * 1.0683509192 . We see that the equation h ( φ ) = 0 has the roots 0 and π . The graph of the function h ( φ ) is positive in the interval 0 , π . Hence, it is increasing; therefore,
min 0 φ π h ( φ ) = h ( 0 ) = a 1 6 3 e .
Now, we consider a * < a a * * , where a * * 1.1944463972 . Then h ( φ ) = 0 has 0 , φ a 0 , π , and π roots. The root φ a depends upon a . We notice that h ( φ ) > 0 in 0 , φ a and h ( φ ) < 0 in φ 0 , π . We also see that h ( 0 ) < h π for a * < a a , where a 1.099999 . Hence,
min 0 φ π h ( φ ) = h ( 0 ) = a 1 6 3 e .
Similarly, we see that h ( π ) < h 0 for 1.099999 < a < a * * . Therefore,
min 0 φ π h ( φ ) = h ( π ) = e 6 3 e a .
For a * * < a < e 6 3 e , we notice that h ( φ ) < 0 in 0 , π . Hence,
min 0 φ π h ( φ ) = h π = e 6 3 e a .
For the case of the minimum radius of a circle centered at ( a , 0 ) which contains ψ V ( D ) = ς 3 6 ς e ς + 1 2 e ς 1 , we calculate the maximum distance of ( a , 0 ) to a point on the boundary of Δ V = ψ V ( D ) . We notice that h is increasing for 1 6 3 e < a a * . Therefore,
max 0 φ π h ( φ ) = h π = e 6 3 e a .
When a * < a a * * , the function h ( φ ) has 0 , φ a , and π . The root φ a depends on a . The graph of h ( φ ) indicates that h ( φ ) > 0 when φ 0 , φ a and h ( φ ) < 0 when φ φ a , π . We conclude that max 0 φ π h ( φ ) = h φ a . Furthermore, h is decreasing when a * * < a < e 6 3 e and
max 0 φ π h ( φ ) = h 0 = a 1 6 3 e .
Hence, we obtain the required result. □
Example 1.
(a) The function k ( ς ) = ς + d 2 ς 2 is in S V * , if and only if
d 2 17 6 e 35 12 e 0.29480 .
(b) The function k ( ς ) = ς 1 λ ς 2 is in S V * , if and only if
λ 7 e 18 18 5 e 0.22540 .
Proof. 
(a) We know that k ( ς ) = ς + d 2 ς 2 S * if and only if d 2 1 2 . Since S V * S * , we have d 2 1 2 , whenever k S V * . The function
ω ( ς ) = ς k ( ς ) k ( ς ) = 1 + 2 d 2 ς 1 + d 2 ς ,
maps D onto
ω 1 2 d 2 2 1 d 2 2 < d 2 1 d 2 2 .
Since 1 2 d 2 2 1 d 2 2 1 ,
1 6 ( 3 e ) 1 2 d 2 2 1 d 2 2 and d 2 1 d 2 2 1 2 d 2 2 1 d 2 2 1 6 ( 3 e ) .
The above two inequalities give us
d 2 17 6 e 35 12 e and d 2 17 6 e 35 12 e
respectively. Thus, we have
d 2 min 17 6 e 35 12 e , 17 6 e 35 12 e = 17 6 e 35 12 e .
(b) Logarithmic differentiation of the function k ( ς ) = ς 1 λ ς 2 yields
ω ( ς ) = ς k ( ς ) k ( ς ) = 1 + λ ς 1 λ ς .
The function ω maps D onto
ς k ( ς ) k ( ς ) 1 + λ 2 1 λ 2 2 λ 1 λ 2 .
Hence, by using Lemma 4, it is contained in Δ V provided
1 + λ 2 1 λ 2 e 6 3 e and 2 λ 1 λ 2 e 6 3 e 1 + λ 2 1 λ 2 .
Thus,
λ < 7 e 18 18 5 e and λ 7 e 18 18 5 e ,
respectively. Thus, we have
λ min 7 e 18 18 5 e , 7 e 18 18 5 e = 7 e 18 18 5 e .
Hence, we obtain the result. □
Theorem 3. 
The S V , m * -radius for S m is
R S V , m * ( S m ) = 17 6 e 6 m 3 e + 36 m 2 3 e 2 + ( 17 6 e ) 2 1 m .
Proof. 
Let k S m . Consider the function h : D C defined by
h ( ς ) = k ( ς ) ς , h P m .
Taking logarithmic differentiation, it follows that
ς k ( ς ) k ( ς ) 1 = ς h ( ς ) h ( ς ) .
By applying Lemma 2, we obtain
ς k ( ς ) k ( ς ) 1 = ς h ( ς ) h ( ς ) 2 m t m 1 t 2 m .
By using Lemma 4, the image of ς t under ς k ( ς ) k ( ς ) is contained in Δ V , if
2 m t m 1 t 2 m 17 6 e 6 3 e .
This implies that
t 2 m ( 17 6 e ) + 12 m 3 e t m 17 6 e 0 .
Hence, the S V , m * -radius of S m is the root of t 2 m ( 17 6 e ) + 12 m 3 e t m 17 6 e = 0 in ( 0 , 1 ) . Consider the function k 0 ( ς ) = ς ( 1 + ς m ) 1 ς m . Then R e k ( ς ) ς > 0 in D . Thus, k 0 S m and ς k 0 ( ς ) k ( ς ) = 1 + 2 m ς m 1 ς 2 m . Furthermore, k 0 gives a sharp result, since at ς = R S B , m * ( S m ) , we have
ς k 0 ( ς ) k 0 ( ς ) 1 = 2 m ς m 1 ς 2 m = 17 6 e 6 3 e .
This completes the proof. □
Consider the class F defined as
F = k A m : R e k ς g ς > 0 and R e g ς ς > 0 , g A m ,
Theorem 4. 
The sharp S V , m * -radius for F is
R S V , m * ( F ) = 17 6 e 6 m 3 e + ( 17 6 e ) 2 + 36 m 2 3 e 2 1 m .
Proof. 
(1) Let k F and define p , h : D C by p ( ς ) = g ( ς ) ς and h ( ς ) = k ( ς ) g ( ς ) . Then, clearly p , h P m . Since k ( ς ) = ς p ( ς ) h ( ς ) , by Lemma 2 it implies that
ς k ( ς ) k ( ς ) 1 4 m t m 1 t 2 m 1 1 6 ( 3 e )
for t 17 6 e 6 m 3 e + 36 m 2 3 e 2 + ( 17 6 e ) 2 1 m = R S V , m * ( F ) . Consider
k 0 ( ς ) = ς 1 + ς m 1 ς m 2 and g 0 ( ς ) = ς 1 + ς m 1 ς m .
Thus, clearly
R e k 0 ( ς ) g 0 ( ς ) > 0 and R e g 0 ( ς ) ς > 0
and hence, k F . A computation shows that at ς = R S V , m * ( F ) e i π m
ς k ( ς ) k ( ς ) = 1 + 4 m ς m 1 ς 2 m = 2 1 6 ( 3 e ) .
This confirms the sharpness.
Theorem 5. 
The sharp S V * -radii for the classes S L * , S C * , S e * , and S lim * are
(1) R S V * ( S L * ) = ( 17 6 e ) 19 6 e 36 3 e 2 0.65109 ,
(2) R S V * ( S C * ) = 1 2 6 + 2 e + 15 + 11 e 2 e 2 / ( 3 e ) 0.37751 ,
(3) R S B * ( S e * ) = ln ( 1 18 6 e ) + 1 0.47528 ,
(4) R S V * ( S lim * ) = 9 2 + 3 e 2 + 9 3 e 3 ( 3 + e ) 0.32624 .
Proof. 
(1) Let k S L * . Then, we have ς k ( ς ) k ( ς ) 1 + ς . Thus, for ς t < R S V * ( S L * ) , we have
ς k ( ς ) k ( ς ) 1 = 1 + ς 1 1 1 t 1 1 6 ( 3 e ) .
By using Lemma 4, we obtain the hypothesis. Consider the function
k 0 ( ς ) = 4 ς exp 2 ( 1 + ς 1 ) ( 1 + 1 + ς ) 2 .
Since ς k 0 ( ς ) k 0 ( ς ) = 1 + ς , k 0 S L * . Furthermore, ς k 0 ( ς ) k 0 ( ς ) = 1 + ς = 1 6 ( 3 e ) at ς = ( 17 6 e ) 19 6 e 36 3 e 2 ; hence, the sharpness of the result is verified.
(2) Let k S C * . Then ς k ( ς ) k ( ς ) 1 + 4 ς 3 + 2 ς 2 3 . Thus, for ς = t , we obtain
ς k ( ς ) k ( ς ) 1 = 1 + 4 ς 3 + 2 ς 2 3 1 1 1 + 4 t 3 + 2 t 2 3 1 1 6 ( 3 e )
for t 1 2 6 + 2 e + 15 e 3 e 2 18 / ( 3 e ) . Consider the function k 1 given by
k 1 ( ς ) = ς e x p 4 ς + ς 2 3 .
Since ς k 1 ( ς ) k 1 ( ς ) = 1 + 4 ς 3 + 2 ς 2 3 , it follows that k 1 S C * and at ς = R S V * ( S C * ) , we have
ς k 1 ( ς ) k 1 ( ς ) = 1 6 ( 3 e ) .
Hence, the result is sharp.
(3) For k S e * , we have
ς k ( ς ) k ( ς ) 1 = e ς 1 e t 1 e 6 ( 3 e ) 1 .
Sharpness is guaranteed by k 2 such that ς k 2 ( ς ) k 2 ( ς ) = e ς .
(4) Suppose k S lim * . Then, ς k ( ς ) k ( ς ) 1 + 2 ς + ς 2 2 (see [21]). Thus, for ς = t , we obtain
ς k ( ς ) k ( ς ) 1 = 1 + 2 ς + ς 2 2 1 1 1 + 2 t + t 2 2 1 1 6 ( 3 e )
for t 2 + e 2 + 1 e . For sharpness, consider k 3 given by
k 3 ( ς ) = ς e x p 4 2 ς + ς 2 4 .
Since ς k 3 ( ς ) k 3 ( ς ) = 1 + 2 ς + ς 2 2 , it follows that k 3 S l i m * and at ς = R S v * ( S l i m * ) , we have
ς k 3 ( ς ) k 3 ( ς ) = 1 6 ( 3 e ) .
Hence, the result is sharp. □

4. Coefficient Estimates

Pommerenke [31] introduced the qth Hankel determinant for analytic functions. It is given as
H q , m k : = d m d m + 1 d m + q 1 d m + 1 d m + 2 d m + q d m + q 1 d m + q d m + 2 q 2 ,
where m 1 and q 1 . We note that
H 2 , 1 k = d 3 d 2 2 , H 2 , 2 k = d 2 d 4 d 3 2
and
H 3 , 1 k = 2 d 2 d 3 d 4 d 3 3 d 4 2 + d 3 d 5 d 2 2 d 5 .
To find the sharp upper bound of H 3 , 1 for subclasses of analytic function is much difficult. Only a few papers [32,33,34,35,36,37] are devoted to finding a sharp bound for H 3 , 1 . In this section, we find the sharp coefficient bound and sharp results for the Hankel determinants H 2 , 1 ,   H 2 , 2 , and H 3 , 1 .
In order to prove our theorems, we will use the following useful results related to the functions in the class P .
Let P represent the class of functions p which are analytic and defined for ς D given by
p ( ς ) = 1 + m = 1 c m ς m
having positive real part in D .
Lemma 5 
([9]). Let h P be given by (11). Then
c 2 ξ c 1 2 4 ξ + 2 , ξ < 0 , 2 , 0 ξ 1 , 4 ξ 2 , ξ > 1 .
Lemma 6. 
Let h P and of the form (11). Then
c 2 ξ c 1 2 2 max 1 , 2 ξ 1 .
Lemma 7 
([38,39]). If h P of the form (11) with c 1 > 0 , then
c 2 = 1 2 [ c 1 2 + ( 4 c 1 2 ) x ] ,
c 3 = 1 4 [ c 1 3 + 2 c 1 ( 4 c 1 2 ) x c 1 ( 4 c 1 2 ) x 2 + 2 ( 4 c 1 2 ) ( 1 x 2 ) y ] ,
c 4 = 1 8 [ c 1 4 + 3 c 1 2 ( 4 c 1 2 ) x + ( 4 3 c 1 2 ) ( 4 c 1 2 ) x 2 + c 1 2 ( 4 c 1 2 ) x 3 + 4 ( 4 c 1 2 ) ( 1 x 2 ) ( c 1 y c 1 x y x ¯ y 2 ) + 4 ( 4 c 1 2 ) ( 1 x 2 ) ( 1 y 2 ) z ]
for some x , y , z D ¯ : = { ς , ς 1 } .
Lemma 8 
([40]). Let h P given by (11). Let 0 J 1 and J ( 2 J 1 ) K J . Then
| c 3 2 J c 1 c 2 + K c 1 3 | 2 .
Lemma 9 
([41]). Let h P be given by (11), 0 < j < 1 , 0 < k < 1 and let
8 j ( 1 j ) { ( k l 2 m ) 2 + ( k j + k k ) 2 } + k ( 1 k ) ( l 2 j k ) 2 4 k 2 j ( 1 k ) 2 ( 1 j ) .
Then
| m c 1 4 + j c 2 2 + 2 k c 1 c 3 3 2 l c 1 2 c 2 c 4 | 2 .
Lemma 10 
([42]). Let D ¯ : = { ς C : | ς | 1 } , and J, K, L are real numbers; let
Y ( J , K , L ) : = max | J + K ς + L ς 2 | + 1 | ς | 2 : ς D ¯ .
If J L 0 , then
Y ( J , K , L ) = | J | + | K | + | L | , | K | 2 ( 1 | L | ) , 1 + | J | + K 2 4 ( 1 | L | ) , | K | < 2 ( 1 | L | ) .
Theorem 6. 
Let k S V * be of the form (2). Then
| d m | 1 2 m 1 , m = 2 , 3 , 4 , 5 .
These bounds are sharp.
Proof. 
Let k S V * . Then
ς k ( ς ) k ( ς ) = ω ς 3 6 ω ς e ω ς + 1 2 e ω ς 1 ,
where ω B in D . Now for h P and of the form (11), we can write
ω ( ς ) = h ( ς ) 1 h ( ς ) + 1 = m = 1 c m ς m 2 + m = 1 c m ς m .
Now
ω ς 3 6 ω ς e ω ς + 1 2 e ω ς 1 = 1 1 4 c 1 ς + 1 4 c 2 + 3 20 c 1 2 ς 2 + 1 4 c 3 + 3 10 c 1 c 2 17 192 c 1 3 ς 3 + 6929 134 , 400 c 1 4 17 64 c 1 2 c 2 + 3 10 c 1 c 3 1 4 c 4 + 3 20 c 2 2 ς 4 + .
Furthermore, we have
ς k ς k ς = 1 + d 2 ς + 2 d 3 d 2 2 ς 2 + 3 d 4 3 d 2 d 3 + d 2 3 ς 3 + 4 d 5 4 d 2 d 4 2 d 3 2 + 4 d 3 d 2 2 d 2 4 ς 4 + .
Substituting in (15) and comparing the coefficients, we obtain
d 2 = 1 4 c 1 ,
d 3 = 1 8 c 2 + 17 160 c 1 2 ,
d 4 = 293 5760 c 1 3 + 21 160 c 1 c 2 1 12 c 3 ,
d 5 = 82531 3225600 c 1 4 67 640 c 2 c 1 2 + 23 240 c 1 c 3 + 29 640 c 2 2 1 16 c 4 .
The bound for | d 2 | can easily be obtained by using the well-known coefficient bounds for class P . The bound for | d 3 | is obtained by using Lemma 5 for ξ = 17 / 20 . For | d 4 | , we may write (19) as follows:
d 4 = 1 12 c 3 63 40 c 1 c 2 + 293 480 c 1 3 = 1 12 c 3 2 J c 1 c 2 + K c 1 3 ,
where J = 63 80 and K = 293 480 . It is easy to verify that 0 J 1 and J ( 2 J 1 ) K J . Then by using Lemma 8, we have the required result. For d 5 , we can rewrite (20) as
d 5 = 1 16 82531 201600 c 1 4 + 29 40 c 2 2 + 23 15 c 1 c 3 67 40 c 2 c 1 2 c 4 = 1 16 m c 1 4 + j c 2 2 + 2 k c 1 c 3 3 2 l c 2 c 1 2 c 4 .
By using Lemma 9 with m = 82531 201600 , j = 29 40 ,   k = 23 30 , and l = 67 60 , we have
8 j ( 1 j ) { ( k l 2 m ) 2 + ( k j + k k ) 2 } + k ( 1 k ) ( l 2 j k ) 2 4 k 2 j ( 1 k ) 2 ( 1 j ) 44977769161 2032128000000 .
Therefore,
| d 5 | 1 8 .
For sharpness, consider the function k m : D C given by
k m ς = ς exp 0 ς 1 t t 3 m 6 t m e t m + 1 2 e t m 1 1 d t , m = 1 , 2 , 3 , 4 .
Then
ς k m ς k m ( ς ) = t 3 m 6 t m e t m + 1 2 e t m 1 , m = 1 , 2 , 3 , 4 .
Hence, k m S V * , and
k 1 ( ς ) = ς exp 0 ς 1 t t 3 6 t e t + 1 2 e t 1 1 d t = ς 1 2 ς 2 + 7 40 ς 3 7 144 ς 4 + ,
k 2 ( ς ) = ς exp 0 ς 1 t t 6 6 t 2 e t 2 + 1 2 e t 2 1 1 = ς 1 4 ς 3 + 9 160 ς 5 + ,
k 3 ( ς ) = ς exp 0 ς 1 t t 9 6 t 3 e t 3 + 1 2 e t 3 1 1 = ς 1 6 ς 4 + 11 360 ς 7 + ,
k 4 ( ς ) = ς exp 0 ς 1 t t 12 6 t 4 e t 4 + 1 2 e t 4 1 1 = ς 1 8 ς 5 + 13 640 ς 9 + .
Next we investigate the Hankel determinant problems; the first two results study Fekete–Szego functional, which is a generalized form of H 2 , 1 .
Theorem 7. 
Let k S V * be given by (2). Then
| d 3 μ d 2 2 | 1 8 7 10 μ 5 , μ 3 10 , 2 , 3 10 μ 17 10 , 7 + 10 μ 5 , μ > 17 10 .
This result is sharp.
Proof. 
If k S V * , then from (17) and (18), we have
d 3 μ d 2 2 = 1 8 c 2 1 20 ( 17 10 μ ) c 1 2 .
Then, by using Lemma 5 for ξ = 1 20 ( 17 10 μ ) , this completes the result. □
Theorem 8. 
Let k S V * be given by (2). Then
| d 3 μ d 2 2 | 1 4 max 1 , 1 10 7 10 μ , μ C .
Sharpness is obtained by k 2 and k 3 given in (21) and (22), respectively.
Corollary 1. 
Let k S V * and of the form (2). Then
H 2 , 1 k = | d 3 d 2 2 | 3 40 .
This inequality is sharp for the function k 3 defined by (22).
Theorem 9. 
Let k S V * and of the form (2). Then
H 2 , 2 k 1 16 .
This inequality is sharp for the function k 3 defined by (22).
Proof. 
From (17)–(19), we obtain
H 2 , 2 ( k ) = 329 c 1 4 230400 c 1 2 c 2 60 c 2 2 64 + c 1 c 3 48 .
Now we can write
H 2 , 2 k = 1 230400 ϕ ,
where
ϕ = 329 c 1 4 1440 c 1 2 c 2 + 4800 c 3 c 1 3600 c 2 2 .
The class S V * as well as the functional H 2 , 2 ( k ) are invariant (rotationally); we suppose that c : = c 1 , such that 0 c 2 . Then from (12) and (13) and by simplifying, we have
ϕ = 91 c 4 120 ( 4 c 2 ) x c 2 300 ( 4 c 2 ) c 2 + 12 x 2 + 2400 c ( 4 c 2 ) ( 1 | x | 2 ) y ,
where x and y are such that | x | 1 , | y | 1 .
First assume that c = 2 . Then
ϕ 1456 ,
From (26), we obtain
H 2 , 2 k 91 14400 ,
and when c = 0 ,
ϕ = 14400 | x | 2 14400 ,
so that
H 2 , 2 k 1 16 .
Next assume that c 0 , 2 . Using triangle inequality, we obtain
ϕ 2400 c ( 4 c 2 ) Ψ J , K , L ,
where
Ψ J , K , L = J + K x + L x 2 + 1 | x | 2 , x D ¯ ,
with J = 91 c 3 2400 ( 4 c 2 ) , K = c 20 , and L = c 2 + 12 8 c . So clearly
J L = 91 c 2 c 2 + 12 2400 4 c 2 > 0 , for c 0 , 2 .
Note now that
K 2 ( 1 L ) = 3 c 2 20 c + 30 10 c > 0 , c 0 , 2 ,
which shows that K 2 ( 1 L ) .
Using Lemma 10, we have
ϕ 2400 c ( 4 c 2 ) J + K + L : = g c ,
where
g c = 329 c 4 1920 c 2 + 14 , 400 .
Since g c < 0 for c 0 , 2 , max g c = g 0 = 14 , 400 , and hence from (26), we obtain the result.
It is sharp for k 2 given in (22). This completes the proof. □
Theorem 10. 
Let k S V * and of the form (2). Then
| d 2 d 3 d 4 | 1 6 .
This result is sharp.
Proof. 
From (17)–(19), we obtain
d 2 d 3 d 4 = 48 576 c 3 c 1 c 2 + 11 48 c 1 3 = 48 576 c 3 2 J c 1 c 2 + K c 1 3 ,
where J = 1 2 and K = 11 48 . It is clear that 0 J 1 and J ( 2 J 1 ) K J . By the application of Lemma 8, we obtain the result. It is sharp for k 4 defined by (23). □
Theorem 11. 
Let k S V * and of the form . Then
| H 3 , 1 ( k ) | 1 36 .
This bound is sharp.
Proof. 
Using (17)–(20), we obtain
H 3 , 1 ( k ) = 1 4644864000 ( 161371 c 1 6 17236800 c 2 3 + 21772800 c 1 c 2 c 3 1597860 c 1 4 c 2 + 658560 c 1 3 c 3 + 4 , 944 , 240 c 1 2 c 2 2 12700800 c 1 2 c 4 + 36288000 c 2 c 4 32256000 c 3 2 ) .
Using Lemma 7 and after simplification we obtain
H 3 , 1 ( k ) = 1 4644864000 v 1 ( c , x ) + v 2 ( c , x ) y + v 3 ( c , x ) y 2 + ψ ( c , x , y ) z ,
where x , y , z D ¯ and
v 1 ( c , x ) : = 5459 c 6 + ( 4 c 2 ) ( ( 4 c 2 ) ( 252 , 000 x 4 c 2 1044540 c 2 x 2 + 453600 x 3 + 693000 x 3 c 2 ) + 2721600 c 2 x 2 51330 c 4 x + 680400 c 4 x 3 895440 c 4 x 2 ) , v 2 ( c , x ) : = 6720 c ( 4 c 2 ) ( 1 | x | 2 ) ( 30 ( 4 c 2 ) ( 8 x + 5 x 2 ) 64 c 2 + 405 x c 2 ) , v 3 ( c , x ) : = 100800 ( 4 c 2 ) ( 1 | x | 2 ) ( 10 ( 4 c 2 ) ( x 2 + 8 ) + 27 c 2 x ¯ ) , ψ ( c , x , y ) : = 907200 ( 4 c 2 ) ( 1 | x | 2 ) ( 1 | y | 2 ) ( 3 c 2 + 10 x ( 4 c 2 ) ) .
Now, by using | x | = x , | y | = y and | z | 1 , we obtain
H 3 , 1 ( k ) 1 4644864000 | v 1 ( c , x ) | + | v 2 ( c , x ) | y + | v 3 ( c , x ) | y 2 + | ψ ( c , x , y ) | G ( c , x , y ) ,
where
G ( c , x , y ) : = 1 4644864000 g 1 ( c , x ) + g 2 ( c , x ) y + g 3 ( c , x ) y 2 + g 4 ( c , x ) ( 1 y 2 ) ,
with
g 1 ( c , x ) : = 5459 c 6 + ( 4 c 2 ) ( ( 4 c 2 ) ( 252000 x 4 c 2 + 1044540 c 2 x 2 + 453600 x 3 + 693000 x 3 c 2 ) + 2721600 c 2 x 2 + 51330 c 4 x + 680400 c 4 x 3 + 895440 c 4 x 2 ) , g 2 ( c , x ) : = 6720 c ( 4 c 2 ) ( 1 x 2 ) ( 30 ( 4 c 2 ) ( 8 x + 5 x 2 ) + 64 c 2 + 405 x c 2 ) , g 3 ( c , x ) : = 100800 ( 4 c 2 ) ( 1 x 2 ) ( 10 ( 4 c 2 ) ( x 2 + 8 ) + 27 c 2 x ) , g 4 ( c , x ) : = 907200 ( 4 c 2 ) ( 1 x 2 ) ( 3 c 2 + 10 x ( 4 c 2 ) ) .
To prove the result, we maximize G ( c , x , y ) over Λ : [ 0 , 2 ] × [ 0 , 1 ] × [ 0 , 1 ] . We discuss all the cases one by one.
I.
Firstly, we prove that interior of Λ has no critical point.
Let ( c , x , y ) ( 0 , 2 ) × ( 0 , 1 ) × ( 0 , 1 ) . Then
G y = 1 691200 ( 4 c 2 ) ( 1 x 2 ) [ 30 y ( x 1 ) ( 10 ( 4 c 2 ) ( x 8 ) + 27 c 2 ) + c ( 30 x ( 4 c 2 ) ( 8 + 5 x ) + c 2 ( 405 x + 64 ) ) ] .
So G y = 0 when
y = c ( 30 x ( 4 c 2 ) ( 8 + 5 x ) + c 2 ( 405 x + 64 ) ) 30 ( 1 x ) ( 10 ( 4 c 2 ) ( x 8 ) + 27 c 2 ) : = y 0 .
If y 0 is in Λ , a critical point, then y 0 ( 0 , 1 ) , and
c 3 ( 405 x + 64 ) + 30 c x ( 8 + 5 x ) ( 4 c 2 ) + 300 ( x 1 ) ( x 8 ) ( 4 c 2 ) < 810 ( 1 x ) c 2
and
c 2 > 40 ( x 8 ) 10 x 107 .
Suppose g ( x ) : = 40 ( 8 x ) / ( 107 10 x ) . Now g ( x ) < 0 for ( 0 , 1 ) . This implies that g ( x ) is decreasing in ( 0 , 1 ) . Hence, c 2 > 280 / 97 . We see that (27) is satisfied for c > 1.760524723 and x < 341 810 . Now we prove that G ( c , x , y ) < 1 36 in ( 1.760524723 , 2 ) × ( 0 , 341 810 ) × ( 0 , 1 ) . We see that 1 x 2 < 1 for x < 341 810 ; we may write
g 1 ( c , x ) 5459 c 6 + ( 4 c 2 ) 34138222033916 23914845 c 2 + 4441003952 32805 326949173771 23914845 c 4 : = Φ 1 ( c ) , g 2 ( c , x ) 6720 c ( 4 c 2 ) 1116434 2187 + 233743 2187 c 2 : = Φ 2 ( c ) , g 3 ( c , x ) 100800 ( 4 c 2 ) 10730162 32805 2309657 32805 c 2 : = Φ 3 ( c ) , g 4 ( c , x ) 907200 ( 4 c 2 ) 98 81 c 2 + 1364 81 : = Φ 4 ( c ) .
Therefore
G ( c , x , y ) 1 1194393600 Φ 1 ( c ) + Φ 4 ( c ) + Φ 2 ( c ) y + Φ 3 ( c ) Φ 4 ( c ) y 2 : = ψ ( c , y ) .
Now
ψ y = 1 1194393600 Φ 2 ( c ) + 2 Φ 3 ( c ) Φ 4 ( c ) y
and
2 ψ y 2 = 1 1194393600 Φ 3 ( c ) Φ 4 ( c ) .
Since Φ 3 ( c ) Φ 4 ( c ) 0 for c ( 1.760524723 , 2 ) , 2 ψ y 2 0 for y ( 0 , 1 ) . This shows that ψ y is decreasing. Hence, for y ( 0 , 1 ) ,
ψ y ψ y | y = 0 = ϕ 2 ( c ) 0 .
Therefore,
ψ ( c , y ) ψ ( c , 1 ) = 1 1194393600 ϕ 1 ( c ) + ϕ 2 ( c ) + ϕ 3 ( c ) : = κ ( c ) .
We see that κ takes its maximum value 0.02473632401 at c = 1.760524723 . Thus,
G ( c , x , y ) < 1 36 0.027778 , ( c , x , y ) 1.760524723 , 2 × 0 , 341 810 × 0 , 1 .
Hence, G ( c , x , y ) < 1 36 . Therefore, G has no optimal solution in the interior of Λ .
II.
Next we obtain the maxima inside the six faces of Λ .
On the face c = 0 , we have
j 1 ( x , y ) : = G ( 0 , x , y ) = 20 ( 1 x 2 ) ( x 1 ) ( x 8 ) y 2 x ( 171 x 2 180 ) 5760 , x , y ( 0 , 1 ) .
As j 1 has no point of maxima in ( 0 , 1 ) × ( 0 , 1 ) since x , y ( 0 , 1 ) ,
j 1 y = ( 1 x 2 ) ( x 1 ) ( x 8 ) y 144 0 .
On the face c = 2 , we write
G ( 2 , x , y ) = 5459 72 , 576 , 000 , x , y ( 0 , 1 ) .
On the face x = 0 , G ( c , x , y ) reduces to G ( c , 0 , y ) , given by
j 2 ( c , y ) = 100800 ( 4 c 2 ) ( 320 107 c 2 ) y 2 + 430080 c 3 ( 4 c 2 ) y + 5459 c 6 2721600 c 4 + 10886400 c 2 4644864000 ,
where c ( 0 , 2 ) and y ( 0 , 1 ) . We solve j 2 y = 0 and j 2 c = 0 to obtain the required result. On solving j 2 y = 0 , we obtain
y = 32 c 3 15 ( 107 c 2 320 ) = : y 1 .
For y 1 ( 0 , 1 ) , which is possible only if c > c 0 , c 0 1.72935 . The equation j 2 c = 0 implies
( 25132800 + 7190400 c 2 ) y 2 + ( 860160 c 358400 c 3 ) y + 5459 c 4 1814400 c 2 + 3628800 = 0 .
By substituting Equation (29) in Equation (30) and simplifying, we obtain
2313362944 c 6 + 1490403 c 8 + 18418671360 c 4 48254976000 c 2 + 41287680000 = 0 .
After some simplifications, we have a solution c 1.40960 of (31) in ( 0 , 2 ) . This value does not satisfy (29). Thus we conclude that j 2 has no point of maxima in ( 0 , 2 ) × ( 0 , 1 ) .
On x = 1 , we have
j 3 ( c , y ) : = G ( c , 1 , y ) = 367829 c 6 11675640 c 4 + 39090240 c 2 + 7257600 4644864000 , c ( 0 , 2 ) .
Solving j 3 c = 0 , we obtain c : = c 0 1.35379 as a critical point. We see that j 3 has maxima approximately equal to 0.00903 at c 0 .
On y = 0 , G ( c , x , y ) can be written as
j 4 ( c , x ) : = G ( c , x , 0 ) = 1 4644864000 5459 c 6 + ( 4 c 2 ) ( ( 4 c 2 ) ( 252000 x 4 c 2 8618400 x 3 + 693000 x 3 c 2 + 9072000 x + 1044540 c 2 x 2 ) + 51330 c 4 x + 680400 c 4 x 3 + 895440 c 4 x 2 + 2721600 c 2 ) .
We see that by using the numerical method, the system j 4 x = 0 and j 4 c = 0 has no solution in ( 0 , 2 ) × ( 0 , 1 ) .
On y = 1 , G ( c , x , y ) reduces to
j 5 ( c , x ) : = G ( c , x , 1 ) = 1 4644864000 5459 c 6 + ( 4 c 2 ) ( ( 4 c 2 ) ( 1044540 c 2 x 2 + 1008000 c x 2 + 252000 x 4 c 2 + 1612800 c x 1008000 c x 4 + 693000 x 3 c 2 1612800 c x 3 7056000 x 2 + 453600 x 3 1008000 x 4 + 8064000 ) + 51 , 330 c 4 x 2721600 c 3 x 3 430080 c 3 x 2 + 2721600 c 2 x 2 2721600 x 3 c 2 + 680400 c 4 x 3 + 430080 c 3 + 895440 c 4 x 2 + 2721600 c 3 x + 2721600 c 2 x ) .
Similarly, j 5 x = 0 and j 5 c = 0 has no solution in ( 0 , 2 ) × ( 0 , 1 ) .
III.
On the vertices of Λ , we have
G ( 0 , 0 , 0 ) = 0 , G ( 0 , 0 , 1 ) = 1 36 , G ( 0 , 1 , 1 ) = 1 640 , G ( 0 , 1 , 0 ) = 1 640 , G ( 2 , 1 , 0 ) = G ( 2 , 0 , 0 ) = G ( 2 , 1 , 1 ) = G ( 2 , 0 , 1 ) = 5459 72576000 .
IV.
Lastly, we find points of maxima of G ( c , x , y ) on the 12 edges of Λ .
G ( c , 0 , 0 ) = 5459 c 6 2721600 c 4 + 10886400 c 2 4644864000 G ( λ 1 , 0 , 0 ) = 1992069 238405448 1549387 1239527205 119202724 0.00235 , c ( 0 , 2 ) .
where
c = : λ 1 = 12 5459 34391700 27295 1549387 1.41851 .
G ( c , 0 , 1 ) = 5459 c 6 430080 c 5 + 8064000 c 4 + 1720320 c 3 64512000 c 2 + 129024000 4644864000 G ( 0 , 0 , 1 ) = 1 36 0.02778 , c ( 0 , 2 ) .
G ( c , 1 , 0 ) = 367829 c 6 11675640 c 4 + 39090240 c 2 + 7257600 4644864000 G ( λ 2 , 1 , 0 ) = 16177950997 61371251382117600 161779509970 2381135977308821 24548500552847040 0.00903 , c ( 0 , 2 ) ,
where
c : = λ 2 = 2 367 , 829 357886582130 735658 161779509970 1.35379 .
G ( 0 , x , 0 ) = x ( 20 19 x 2 ) 640 G ( 0 , 2 57 285 , 0 ) = 285 1368 0.01234 , x ( 0 , 1 )
G ( 0 , x , 1 ) = 20 x 4 + 9 x 3 140 x 2 + 160 5760 G ( 0 , 0 , 1 ) = 1 36 , x ( 0 , 1 ) .
G ( 2 , x , 0 ) = 5459 72576000 , x ( 0 , 1 ) . G ( 2 , x , 1 ) = 5459 72576000 , x ( 0 , 1 ) . G ( 0 , 0 , y ) = 1 36 y 2 1 36 , y ( 0 , 1 ) . G ( 0 , 1 , y ) = 1 640 0.00156 , y ( 0 , 1 ) . G ( 2 , 0 , y ) = 5459 72576000 , y ( 0 , 1 ) . G ( 2 , 1 , y ) = 5459 72576000 , y ( 0 , 1 ) .
Since all cases have been dealt with, we have the required result. The result is sharp for k 3 given in (23), which is equivalent to choosing d 2 = d 3 = d 5 = 0 and d 4 = 1 6 , which from (10), gives | H 3 , 1 ( k ) | = 1 36 .

5. Conclusions

We have defined and studied the starlike functions associated with Van der Pol numbers. We have studied certain geometrical characteristics of the said functions which include the derivation of structural formula, finding the radius of starlikeness of order α and strong starlikeness, and establishing some inclusion results. We have also studied the radii problems for various classes of analytic functions. Furthermore, we have investigated some coefficient-related problems which include the sharp initial coefficient bounds and sharp bounds of Hankel determinants of order two and three. This work would be helpful in finding the bounds of the fourth Hankel determinant, Toelpitz determinants, bounds of logarithmic coefficients and their related Hankel determinants for the functions of defined class S V * and their associated convex functions.

Author Contributions

Conceptualization, M.R. and Q.X.; Methodology, M.R. and Q.X.; Software, M.A.; Validation, H.M.S. and S.N.M.; Formal analysis, H.M.S. and S.N.M.; Investigation, M.R., Q.X. and M.A.; Resources, M.A.; Data curation, F.T.; Writing—original draft, S.N.M.; Writing—review & editing, S.N.M.; Visualization, M.A.; Supervision, H.M.S.; Project administration, F.T.; Funding acquisition, F.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data is used in this work.

Acknowledgments

This research was supported by the researchers Supporting Project Number (RSP2023R401), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Van Der Pol, B. Smoothing and unsmoothing in M. Kac. In Probability and Related Topics in Physical Sciences; Amer Mathematical Society: New York, NY, USA, 1957; pp. 223–235. [Google Scholar]
  2. Howar, F.T. The van der Pol numbers and a related sequence of rational numbers. Math. Nachr. 1969, 42, 89–102. [Google Scholar] [CrossRef]
  3. Carlitz, L. A sequence of integers related to the Bessel functions. Proc. Amer. Math. Soc. 1963, 14, 1–9. [Google Scholar] [CrossRef]
  4. Kishore, N. The Rayleigh function. Proc. Amer. Math. Soc. 1963, 14, 527–533. [Google Scholar] [CrossRef]
  5. Kishore, N. The Rayleigh polynomial. Proc. Amer. Math.Soc. 1964, 15, 911–917. [Google Scholar] [CrossRef]
  6. Howar, F.T. Factors and roots of the van der Pol polynomials. Proc. Amer. Math. Soc. 1975, 55, 1–8. [Google Scholar] [CrossRef]
  7. Gustafsson, B.; Vasilev, A. Conformal and Potential Analysis in Hele-Shaw Cells; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
  8. Bernstein, S.; Bouchot, J.L.; Reinhardt, M.; Heise, B. Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications. In Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics; Hitzer, E., Sangwine, S., Eds.; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
  9. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
  10. Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polonici Math. 1971, 23, 159–177. [Google Scholar] [CrossRef]
  11. Robertson, M.S. On the theory of univalent functions. Ann. Math. (Ser. 2) 1936, 37, 374–408. [Google Scholar] [CrossRef]
  12. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
  13. Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech.Rzeszowskiej Mat 1996, 19, 101–105. [Google Scholar]
  14. Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Intern. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
  15. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
  16. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
  17. Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
  18. Raina, R.K.; Sokół, J. On coefficient estimates for a certain class of starlike functions. Haceppt. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
  19. Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate of starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
  20. Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
  21. Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limacon. AIP Conf. Proc. 2018, 1974, 030023. [Google Scholar]
  22. Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Technol. Resoviensis 1999, 175, 111–116. [Google Scholar]
  23. Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef]
  24. Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
  25. Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math.Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
  26. Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
  27. Raza, M.; Binyamin, M.A.; Riaz, A. A study of convex and related functions in the perspective of geometric function theory. In Inequalities with Generalized Convex Functions and Applications; Awan, M.U., Cristescu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
  28. Ali, R.M.; Jain, N.K.; Ravichandran, V. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 2012, 128, 6557–6565. [Google Scholar] [CrossRef]
  29. Shah, G.M. On the univalence of some analytic functions. Pac. J. Math. 1972, 43, 239–250. [Google Scholar] [CrossRef]
  30. Ravichandran, V.; Rønning, F.R.; Shanmugam, T.N. Radius of convexity and radius of starlikeness for some classes of analytic functions. Complex Var. Theory Appl. 1997, 33, 265–280. [Google Scholar] [CrossRef]
  31. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
  32. Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
  33. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  34. Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
  35. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
  36. Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
  37. Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
  38. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
  39. Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
  40. Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
  41. Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
  42. Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Raza, M.; Srivastava, H.M.; Xin, Q.; Tchier, F.; Malik, S.N.; Arif, M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics 2023, 11, 2231. https://doi.org/10.3390/math11102231

AMA Style

Raza M, Srivastava HM, Xin Q, Tchier F, Malik SN, Arif M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics. 2023; 11(10):2231. https://doi.org/10.3390/math11102231

Chicago/Turabian Style

Raza, Mohsan, Hari Mohan Srivastava, Qin Xin, Fairouz Tchier, Sarfraz Nawaz Malik, and Muhammad Arif. 2023. "Starlikeness Associated with the Van Der Pol Numbers" Mathematics 11, no. 10: 2231. https://doi.org/10.3390/math11102231

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop