A Decoding Algorithm for Convolutional Codes
Abstract
:1. Introduction
2. Preliminaries and Notations
2.1. Linear Codes and Error-Correcting Pairs
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- .
2.2. Convolutional Codes and ISO Representations
3. The Combined Algorithm
3.1. Preparation and Assumptions
3.2. The Algorithm
Algorithm 1: Decoding. |
|
3.3. Justification
3.4. Complexity
3.5. Performance
4. A Case Study
4.1. The Convolutional Code
4.2. The Linear Codes
4.3. The Linear Code
4.4. Parameters, Assumptions and Complexity
- 1.
- ;
- 2.
- if and if ;
- 3.
- ; and
- 4.
- and .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Benchimol, I.B.; Pimentel, C.; Souza, R.D.; Uchôa-Filho, B.F. A new computational decoding complexity measure of convolutional codes. EURASIP J. Adv. Signal Process. 2014, 2014, 173. [Google Scholar] [CrossRef] [Green Version]
- McEliece, R.J. The trellis complexity of convolutional codes. IEEE Trans. Inform. Theory 1996, 42 Pt 1, 1855–1864. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, R.; Zigangirov, K.S. Fundamentals of Convolutional Coding; IEEE Series on Digital & Mobile Communication; IEEE Press: New York, NY, USA, 1999. [Google Scholar]
- Rosenthal, J. An Algebraic Decoding Algorithm for Convolutional Codes; Progress in Systems and Control Theory; Birkhauser Verlag: Basel, Switzerland, 1999; Volume 25. [Google Scholar]
- Pellikaan, R. On Decoding by Error Location and Dependent Sets of Error Positions. Discret. Math. 1992, 106, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, J.; Schumacher, J.M.; York, E.V. On Behaviors and Convolutional Codes. IEEE Trans. Inform. Theory 1996, 42 Pt 1, 1881–1891. [Google Scholar] [CrossRef]
- York, E.V. Algebraic Description and Construction of Error-Correcting Codes: A Linear Systems Point of View. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN, USA, 1997. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.2368&rep=rep1&type=pdf (accessed on 4 April 2022).
- Márquez-Corbella, I.; Pellikaan, R. A characterization of MDS codes that have an error-correcting pair. Finite Fields Their Appl. 2016, 40, 224–245. [Google Scholar] [CrossRef] [Green Version]
- Muñoz Castañeda, A.L.; Plaza Martín, F.J. On the existence and construction of maximum distance profile convolutional codes. Finite Fields Appl. 2021, 75, 101877. [Google Scholar] [CrossRef]
- Plaza Martín, F.J.; Iglesias Curto, J.I.; Serrano Sotelo, G. On the construction of 1-D MDS convolutional Goppa codes. IEEE Trans. Inform. Theory 2013, 59, 4615–4625. [Google Scholar] [CrossRef]
- Lieb, J.; Rosenthal, J. Erasure decoding of convolutional codes using first-order representations. Math. Control Signals Syst. 2021, 33, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.; York, E.V. BCH convolutional codes. IEEE Trans. Inform. Theory 1999, 45, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [Google Scholar] [CrossRef]
- Williams, V.V. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the STOC’12 2012 ACM Symposium on Theory of Computing, New York, NY, USA, 19–22 May 2012; pp. 887–898. [Google Scholar] [CrossRef] [Green Version]
- Lamarca, M.; Sala, J.; Martinez, A. Iterative Decoding Algorithms for RS-Convolutional Concatenated Codes. In Proceedings of the 3rd International Symposium on Turbo Codes, Brest, France, 1–5 September 2003; pp. 543–546. [Google Scholar]
- Smarandache, R.; Pusane, A.E.; Vontobel, P.O.; Costello, D.J. Pseudo-Codewords in LDPC Convolutional Codes. In Proceedings of the IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 1364–1368. [Google Scholar]
- Muñoz Castañeda, A.L.; Muñoz Porras, J.M.; Plaza Martín, F.J. Rosenthal’s decoding algorithm for certain 1-dimensional convolutional codes. IEEE Trans. Inform. Theory 2019, 65, 7736–7741. [Google Scholar] [CrossRef]
- Guillén i Fàbregas, A. Coding in the block-erasure channel. IEEE Trans. Inform. Theory 2006, 52, 5116–5121. [Google Scholar] [CrossRef]
- Hutchinson, R.; Smarandache, R.; Trumpf, J. On superregular matrices and MDP convolutional codes. Linear Algebra Appl. 2008, 428, 2585–2596. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Sánchez, S.; Plaza Martín, F.J. A Decoding Algorithm for Convolutional Codes. Mathematics 2022, 10, 1573. https://doi.org/10.3390/math10091573
Martín Sánchez S, Plaza Martín FJ. A Decoding Algorithm for Convolutional Codes. Mathematics. 2022; 10(9):1573. https://doi.org/10.3390/math10091573
Chicago/Turabian StyleMartín Sánchez, Sandra, and Francisco J. Plaza Martín. 2022. "A Decoding Algorithm for Convolutional Codes" Mathematics 10, no. 9: 1573. https://doi.org/10.3390/math10091573
APA StyleMartín Sánchez, S., & Plaza Martín, F. J. (2022). A Decoding Algorithm for Convolutional Codes. Mathematics, 10(9), 1573. https://doi.org/10.3390/math10091573