An Application of Hayashi’s Inequality for Differentiable Functions
Abstract
1. Introduction
2. The Results
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitrinović, D.S.; Pexcxarixcx, J.E.; Fink, A.M. Classical and New Inequalities in Analysis. In Mathematics and Its Applications; East European Series; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
- Alomari, M.W.; Hussain, S.; Liu, Z. Some Steffensen’s type inequalities. Adv. Pure Appl. Math. 2017, 8, 219–226. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Dragomir, S.S. An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 1996, 32, 95–99. [Google Scholar] [CrossRef][Green Version]
- Gauchman, H. Some integral inequalities involving Taylor’s remainder I. J. Inequal. Pure Appl. Math. 2002, 3, 26. [Google Scholar]
- Alomari, M.W. A companion of the generalized trapezoid inequality and applications. J. Math. Appl. 2013, 36, 5–15. [Google Scholar]
- Alomari, M.W. A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and applications in numerical integration. Kragujev. J. Math. 2012, 36, 77–82. [Google Scholar]
- Alomari, M.W. New inequalities of Steffensen’s type for s–convex functions. Afr. Mat. 2014, 25, 1053–1062. [Google Scholar] [CrossRef]
- Alomari, M.W. A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration. Ukr. Math. J. 2012, 64, 491–510. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S.; Pearce, C.E.M. A generalized trapezoid inequality for functions of bounded variation. Turk. J. Math. 2000, 24, 147–163. [Google Scholar]
- Cerone, P.; Dragomir, S.S.; Roumeliotis, J. An inequality of Ostrowski-Griiss type for twice differentiable mappings and applications in numerical integration. RGMIA Res. Rep. Collect. 1998, 1, 8. [Google Scholar]
- Dragomir, S.S.; Wang, S. An inequality of Ostrowski–Grüss’ type and its applications to the estimation of error bounds for some special means and for Some numerical quadrature rules. Comput. Math. Appl. 1997, 33, 15–20. [Google Scholar] [CrossRef]
- Guessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite-Hadamard type. J. Approx. Theory 2002, 115, 260–288. [Google Scholar] [CrossRef]
- Ujević, N. New bounds for the first inequality of Ostrowski–Grüss type and applications. Comput. Math. Appl. 2003, 46, 421–427. [Google Scholar] [CrossRef]
- Matić, M.; Pexcxarixcx, J.; Ujevixcx, N. Improvement and further generalization of inequalities of Ostrowski–Grüss type. Comput. Math. Appl. 2000, 39, 161–175. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Klaričić Bakula, M. An Application of Hayashi’s Inequality for Differentiable Functions. Mathematics 2022, 10, 907. https://doi.org/10.3390/math10060907
Alomari MW, Klaričić Bakula M. An Application of Hayashi’s Inequality for Differentiable Functions. Mathematics. 2022; 10(6):907. https://doi.org/10.3390/math10060907
Chicago/Turabian StyleAlomari, Mohammad W., and Milica Klaričić Bakula. 2022. "An Application of Hayashi’s Inequality for Differentiable Functions" Mathematics 10, no. 6: 907. https://doi.org/10.3390/math10060907
APA StyleAlomari, M. W., & Klaričić Bakula, M. (2022). An Application of Hayashi’s Inequality for Differentiable Functions. Mathematics, 10(6), 907. https://doi.org/10.3390/math10060907