Next Article in Journal
Dynamical Analysis of a Delayed Diffusive Predator–Prey Model with Additional Food Provided and Anti-Predator Behavior
Previous Article in Journal
Gulf Countries’ Citizens’ Acceptance of COVID-19 Vaccines—A Machine Learning Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions

by
Nuttapong Arunrat
1,
Keaitsuda Maneeruk Nakprasit
1,
Kamsing Nonlaopon
1,*,
Praveen Agarwal
2 and
Sotiris K. Ntouyas
3,4
1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Anand International College of Engineering, Jaipur 302029, India
3
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
4
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(3), 468; https://doi.org/10.3390/math10030468
Submission received: 16 December 2021 / Revised: 27 January 2022 / Accepted: 30 January 2022 / Published: 31 January 2022

Abstract

:
In this paper, we apply ( p , q ) -calculus to establish some new Chebyshev-type integral inequalities for synchronous functions. In particular, we generalize results of quantum Chebyshev-type integral inequalities by using ( p , q ) -integral. By taking p = 1 and q 1 , our results reduce to classical results on Chebyshev-type inequalities for synchronous functions. Furthermore, we consider their relevance with other related known results.

1. Introduction

Let f , g : [ a , b ] R be integrable functions and ϕ , φ : [ a , b ] ( 0 , ) be integrable functions. The Chebyshev functional is defined by
T ( f , g , ϕ , φ ) = a b φ ( x ) d x a b ϕ ( x ) f ( x ) g ( x ) d x + a b ϕ ( x ) d x a b φ ( x ) f ( x ) g ( x ) d x a b φ ( x ) f ( x ) d x a b ϕ ( x ) g ( x ) d x a b ϕ ( x ) f ( x ) d x a b φ ( x ) g ( x ) d x ,
see [1] for more details.
We say that functions f and g are synchronous (asynchronous, respectively) on [ a , b ] if ( f ( x ) f ( y ) ) ( g ( x ) g ( y ) ) 0 ( ( f ( x ) f ( y ) ) ( g ( x ) g ( y ) ) 0 , respectively) for each x , y [ a , b ] . It follows that T ( f , g , ϕ , φ ) 0 ( T ( f , g , ϕ , φ ) 0 , respectively) if f and g are synchronous (asynchronous, respectively) on [ a , b ] (see, e.g., [2,3]). The Chebyshev inequality can obtained from (1) by setting ϕ = φ .
The Chebyshev functional (1) has attracted the attention of many researchers mainly due to its applications in numerical quadrature, probability, transform theory, and statistical problems. Moreover, the Chebyshev functional (1) has been applied to some integral inequalities by using known fractional integral operators, see [4,5,6,7,8,9,10] and the references therein.
Quantum calculus, also known as q-calculus, was introduced by the mathematician Euler in the eighteenth century, studying calculus without limits, where classical mathematical formulas are obtained as q 1 . Newton defined the number in q-infinite series. The definite q-integral, known as the q-Jackson integral, is defined by F. H. Jackson [11,12] in 1910. In quantum calculus, it has many applications in various fields of mathematics and physics, specifically in hypergeometric functions, convexity function, orthogonal polynomials, mechanics, number theory, and relativity theory. In [13], M. Aslam et al. obtained quantum Ostrowski inequalities for the q-differentiable convex function. A. Aral et al. [14] studied applications of q-calculus in operator theory, and H. Gauchman [15] obtained integral inequalities in q-calculus. B. Ahmad et al. [16,17,18,19] studied boundary-value problems for nonlinear q-difference equations with any boundary conditions. In [20], J. D. Bukweli-Kyemba and M. N. Hounkonnou studied quantum deformed algebra: coherent states and special functions. S. Bermudo et al. [21] obtained q-Hermite–Hadamard inequalities for general convex functions and F. Chen W. Yang [22] obtained some new Chebyshev-type quantum integral inequalities on finite intervals. Furthermore, the fundamental knowledge and theoretical concepts of quantum calculus are covered in the book written by V. Kac and P. Cheung [23].
In 2013, J. Tariboon and S. K. Ntouyas [24] introduced the quantum calculus on finite intervals. Next, they extended the Hölder, Hermite–Hadamard, trapezoid, Ostrowski, Cauchy–Bunyakovsky–Schwarz, Grüss, and Grüss-Čebyšev integral inequalities to quantum calculus on finite intervals in [25].
In 2016, M. Tunç and E. Göv [26,27] introduced the ( p , q ) -derivative and ( p , q ) -integral on finite intervals while proving some properties, and gave several inequalities of integral via ( p , q ) -calculus. In recent years, many quantum integral inequalities on a finite interval have been investigated more generally in ( p , q ) -calculus, which was first considered by R. Chakrabarti and R. Jagannathan [28]. It is worth noting that q-calculus cannot be directly retrieved by replacing q with q / p in q-calculus, but q-calculus may be recaptured by setting p = 1 in ( p , q ) -calculus. In [29], J. Prabseang et al. obtained ( p , q ) -Hermite–Hadamard inequalities for double integral and ( p , q ) -differentiable convex functions. H. Kalsoom et al. [30] obtained ( p , q ) -estimates of Hermite–Hadamard-type inequalities for coordinated convex and quasi-convex functions. In [31], M. N. Hounkonnou studied ( p , q ) -calculus: differentiation and integration and P. N. Sadjung [32] studied ( p , q ) -Taylor formula. Y. M. Chu et al. [33] obtained new post-quantum analogues of Ostrowski-type inequalities using new definitions of left–right ( p , q ) -derivatives and definite integrals. In [34], H. Kalsoom et al. obtained post-quantum Hermite–Hadamard type inequalities associated with coordinated higher-order generalized strongly pre-index and quasi-pre-index mappings. M. Kunt et al. [35] obtained ( p , q ) -estimates of Hermite–Hadamard-type inequalities for midpoint type integral inequalities via convex and quasi convex function. In addition, more results of ( p , q ) -calculus appear in [36,37,38,39] and the references cited therein.
Motivated by the results mentioned above, by using the four parameters of deformation ( p 1 , q 1 ) and ( p 2 , q 2 ) , we propose generalizing and extending some new Chebyshev inequalities in q-integral to ( p , q ) -integral. Furthermore, we obtain their relevance with other related known results. We hope that the ideas and techniques presented in this paper will inspire interested readers working in this field.

2. Preliminaries

In this section, we present basic concepts of ( p , q ) -calculus, which will be used in our work. Throughout this paper, we let J = [ a , b ] R , K = [ c , d ] R , 0 < q < p 1 , 0 < q i < p i 1 ( i = 1 , 2 ) be constants, and we set a b p = p b + ( 1 p ) a , a b q = q b + ( 1 q ) a , c d p = p d + ( 1 p ) c , a x p = p x + ( 1 p ) a , and a x q = q x + ( 1 q ) a .
Definition 1
([26,27]). The ( p , q ) -derivative of a continuous function f : J R at x, denoted by a D p , q f ( x ) , is defined by
a D p , q f ( x ) = f a x p f a x q ( p q ) ( x a ) , x a ; lim x a a D p , q f ( x ) , x = a .
If a D p , q f ( x ) exists for all x J , then f is ( p , q ) -differentiable on J.
By setting a = 0 in Definition 1, we obtain 0 D p , q f = D p , q f , where D p , q f is defined by
D p , q f ( x ) = f p x f q x ( p q ) ( x ) , x 0 ; lim x 0 D p , q f ( x ) , x = 0 .
In case p = 1 , a D p , q f = a D q f which is the q-derivative of the function f.
Example 1.
For x J and n N , we have
a D p , q ( x a ) n = p n q n p q · ( x a ) n 1 .
Definition 2
([26,27]). If f : J R is a continuous function and x J , then the ( p , q ) -integral of the function f for x, denoted by I p , q a f ( x ) , is defined by
I p , q a f ( x ) : = a x f ( t ) a d p , q t = ( p q ) ( x a ) n = 0 q n p n + 1 f q n p n + 1 x + 1 q n p n + 1 a .
Moreover, if c ( a , x ) , then the ( p , q ) -integral is defined by
c x f ( t ) a d p , q t = a x f ( t ) a d p , q t a c f ( t ) a d p , q t .
If I p , q a f ( x ) exists for all x J , then f is ( p , q ) -integrable on J.
Definition 2 reduces to the classical q-integral of the function f when a = 0 and p = 1 .
Example 2.
Define a function f : J R by f ( x ) = k x , where k R . Then
a x f ( t ) a d p , q t = a x k t a d p , q t = ( p q ) ( x a ) n = 0 q n p n + 1 k q n p n + 1 x + 1 q n p n + 1 a = k ( x a ) ( x a ( 1 p q ) ) p + q .
Theorem 1
([26,27]). If f : J R is a continuous function and c ( a , x ) , then
(i)
a x a D p , q f ( t ) a d p , q t = f ( x ) f ( a ) ;
(ii)
c x a D p , q f ( t ) a d p , q t = f ( x ) f ( c ) .
Theorem 2
([26,27]). If f , g : J R are continuous functions, x J , and α R , then
(i)
a x [ f ( t ) + g ( t ) ] a d p , q t = a x f ( t ) a d p , q t + a x g ( t ) a d p , q t ;
(ii)
a x α f ( t ) a d p , q t = α a x f ( t ) a d p , q t ;
(iii)
a x f ( p t + ( 1 p ) a ) a D p , q g ( t ) a d p , q t = [ ( f g ) ( t ) ] a x a x g ( q t + ( 1 q ) a ) a D p , q f ( t ) a d p , q t .
Lemma 1.
If f , g : J R are continuous functions with f ( t ) g ( t ) for all t J , then, for x [ a , p b + ( 1 p ) a ] , we have
a x f ( t ) a d p , q t a x g ( t ) a d p , q t .
Proof. 
Let x [ a , p b + ( 1 p ) a ] . Then q n p n + 1 x + 1 q n p n + 1 a [ a , b ] . Because f , g : J R are continuous functions with f ( t ) g ( t ) for all t J , we get
f q n p n + 1 x + 1 q n p n + 1 a g q n p n + 1 x + 1 q n p n + 1 a .
We multiply (3) by ( p q ) ( x a ) · q n p n + 1 0 and then sum n from zero to infinity to obtain
a x f ( t ) a d p , q t = ( p q ) ( x a ) n = 0 q n p n + 1 f q n p n + 1 x + 1 q n p n + 1 a ( p q ) ( x a ) n = 0 q n p n + 1 g q n p n + 1 x + 1 q n p n + 1 a = a x g ( t ) a d p , q t ,
which is inequality (2). This complete the proof. □
The next lemma is due to N. Arunrat et al. [39].
Lemma 2
([39]). If f : J R is a twice ( p , q ) -differentiable function with a D p , q 2 f ( p , q ) -integrable on J, then
a a b p ( x a ) ( b x ) a D p , q 2 f ( x ) a d p , q x = q p 2 ( b a ) f a b p q + 1 p ( b a ) f ( a ) p + q p 3 a a b p f a x q 2 a d p , q x .

3. Main Results

In this section, we establish some new Chebyshev-type integral inequalities via ( p , q ) -calculus. From now on, we assume that all of ( p , q ) -integral exists, and let
I p , q a ( u f ) ( a b p ) : = a a b p u ( t ) f ( t ) a d p , q t
and
I p , q a ( u f g ) ( a b p ) : = a a b p u ( t ) f ( t ) g ( t ) a d p , q t .
Lemma 3.
Let f and g be continuous and synchronous functions on J and let u , v : J [ 0 , ) be continuous functions. Then
I p , q a u ( a b p ) I p , q a ( v f g ) ( a b p ) + I p , q a v ( a b p ) I p , q a ( u f g ) ( a b p ) I p , q a ( u f ) ( a b p ) I p , q a ( v g ) ( a b p ) + I p , q a ( v f ) ( a b p ) I p , q a ( u g ) ( a b p ) .
Proof. 
Since f and g are continuous and synchronous functions on [ a , b ] , we get for each α , β [ a , b ] that ( f ( α ) f ( β ) ) ( g ( α ) g ( β ) ) 0 . Equivalently,
f ( α ) g ( α ) + f ( β ) g ( β ) f ( α ) g ( β ) + f ( β ) g ( α ) .
Multiplying both sides of (5) by v ( α ) and then ( p , q ) -integrating the resulting relation with respect to α from a to a b p , we obtain
I p , q a ( v f g ) ( a b p ) + f ( β ) g ( β ) I p , q a v ( a b p ) g ( β ) I p , q a ( v f ) ( a b p ) + f ( β ) I p , q a ( v g ) ( a b p ) .
Multiplying both sides of (6) by u ( β ) and then ( p , q ) -integrating the resulting relation with respect to β from a to a b p , we obtain
I p , q a u ( a b p ) I p , q a ( v f g ) ( a b p ) + I p , q a v ( a b p ) I p , q a ( u f g ) ( a b p ) I p , q a ( u f ) ( a b p ) I p , q a ( v g ) ( a b p ) + I p , q a ( v f ) ( a b p ) I p , q a ( u g ) ( a b p ) ,
which is inequality (4). The proof is complete. □
Theorem 3.
Let f and g be continuous and synchronous functions on J and let ϕ , φ , ψ : J [ 0 , ) be continuous functions. Then,
2 I p , q a ϕ ( a b p ) I p , q a φ ( a b p ) I p , q a ( ψ f g ) ( a b p ) + I p , q a ψ ( a b p ) I p , q a ( φ f g ) ( a b p ) + 2 I p , q a φ ( a b p ) I p , q a ψ ( a b p ) I p , q a ( ϕ f g ) ( a b p ) I p , q a ϕ ( a b p ) [ I p , q a ( φ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( φ g ) ( a b p ) ] + I p , q a φ ( a b p ) [ I p , q a ( ϕ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) ] + I p , q a ψ ( a b p ) [ I p , q a ( ϕ f ) ( a b p ) I p , q a ( φ g ) ( a b p ) + I p , q a ( φ f ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) ] .
Proof. 
Replacing u and v in (4) by φ and ψ , respectively, we get
I p , q a φ ( a b p ) I p , q a ( ψ f g ) ( a b p ) + I p , q a ψ ( a b p ) I p , q a ( φ f g ) ( a b p ) I p , q a ( φ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( φ g ) ( a b p ) .
Multiplying both sides of (8) by I p , q a ϕ ( a b p ) , we obtain
I p , q a ϕ ( a b p ) I p , q a φ ( a b p ) I p , q a ( ψ f g ) ( a b p ) + I p , q a ψ ( a b p ) I p , q a ( φ f g ) ( a b p ) I p , q a ϕ ( a b p ) [ I p , q a ( φ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( φ g ) ( a b p ) ] .
By substituting u = ϕ and v = ψ in (4), we have
I p , q a ϕ ( a b p ) I p , q a ( ψ f g ) ( a b p ) + I p , q a ψ ( a b p ) I p , q a ( ϕ f g ) ( a b p ) I p , q a ( ϕ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) .
Multiplying both sides of (10) by I p , q a φ ( a b p ) , we obtain
I p , q a φ ( a b p ) I p , q a ϕ ( a b p ) I p , q a ( ψ f g ) ( a b p ) + I p , q a ψ ( a b p ) I p , q a ( ϕ f g ) ( a b p ) I p , q a φ ( a b p ) [ I p , q a ( ϕ f ) ( a b p ) I p , q a ( ψ g ) ( a b p ) + I p , q a ( ψ f ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) ] .
Putting u = ϕ and v = φ in (4) and multiplying both sides by I p , q a ψ ( a b p ) , we get
I p , q a ψ ( a b p ) I p , q a ϕ ( a b p ) I p , q a ( φ f g ) ( a b p ) + I p , q a φ ( a b p ) I p , q a ( ϕ f g ) ( a b p ) I p , q a ψ ( a b p ) [ I p , q a ( ϕ f ) ( a b p ) I p , q a ( φ g ) ( a b p ) + I p , q a ( φ f ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) ] .
By combining (9), (11), and (12), we obtain inequality (7), which accomplishes the proof. □
Remark 1.
(i)
Lemma 3 and Theorem 3 are reversed in the following cases.
(a)
The functions f and g are asynchronous on J.
(b)
The functions ϕ , φ , and ψ are non-positive on J.
(c)
Two of the functions ϕ , φ , and ψ are non-negative and the third one is non-positive on J.
(ii)
If we take p = 1 in Theorem 3, then it reduces to Theorem 3.2 in [22].
Lemma 4.
Let f and g be continuous and synchronous functions on J K and let u , v : J K [ 0 , ) be continuous functions. Then,
I p 1 , q 1 a u ( a b p 1 ) I p 2 , q 2 c ( v f g ) ( c d p 2 ) + I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c v ( c d p 2 ) I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( v g ) ( c d p 2 ) + I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( v f ) ( c d p 2 ) .
Proof. 
Since f and g are continuous and synchronous functions on J K , we get for all α , β J K that ( f ( α ) f ( β ) ) ( g ( α ) g ( β ) ) 0 . Equivalently,
f ( α ) g ( α ) + f ( β ) g ( β ) f ( α ) g ( β ) + f ( β ) g ( α ) .
Multiplying both sides of (14) by v ( β ) and then ( p 2 , q 2 ) -integrating the resulting inequality with respect to β from c to c d p 2 , we obtain
f ( α ) g ( α ) I p 2 , q 2 c v ( c d p 2 ) + I p 2 , q 2 c ( v f g ) ( c d p 2 ) f ( α ) I p 2 , q 2 c ( v g ) ( c d p 2 ) + g ( α ) I p 2 , q 2 c ( v f ) ( c d p 2 ) .
Multiplying both sides of (15) by u ( α ) and then ( p 1 , q 1 ) -integrating the resulting inequality with respect to α from a to a b p 1 , we obtain
I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c v ( c d p 2 ) + I p 1 , q 1 a u ( a b p 1 ) I p 2 , q 2 c ( v f g ) ( c d p 2 ) I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( v g ) ( c d p 2 ) + I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( v f ) ( c d p 2 ) ,
which is inequality (13). The proof is complete. □
Theorem 4.
Let f and g be continuous and synchronous functions on J K and let ϕ , φ , ψ : J K [ 0 , ) be continuous functions. Then,
I p 1 , q 1 a ϕ ( a b p 1 ) [ I p 1 , q 1 a ψ ( a b p 1 ) I p 2 , q 2 c ( φ f g ) ( c d p 2 ) + 2 I p 1 , q 1 a φ ( a b p 1 ) I p 2 , q 2 c ( ψ f g ) ( c d p 2 ) + I p 1 , q 1 a ( φ f g ) ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) ] + I p 1 , q 1 a ( ϕ f g ) ( a b p 1 ) [ I p 1 , q 1 a φ ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) + I p 1 , q 1 a ψ ( a b p 1 ) I p 2 , q 2 c φ ( c d p 2 ) ] I p 1 , q 1 a ϕ ( a b p 1 ) [ I p 1 , q 1 a ( φ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( φ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) ] + I p 1 , q 1 a φ ( a b p 1 ) [ I p 1 , q 1 a ( ϕ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) ] + I p 1 , q 1 a ψ ( a b p 1 ) [ I p 1 , q 1 a ( ϕ f ) ( a b p 1 ) I p 2 , q 2 c ( φ g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ g ) ( a b p 1 ) I p 2 , q 2 c ( φ f ) ( c d p 2 ) ] .
Proof. 
Putting u = φ and v = ψ in (13), we get
I p 1 , q 1 a φ ( a b p 1 ) I p 2 , q 2 c ( ψ f g ) ( c d p 2 ) + I p 1 , q 1 a ( φ f g ) ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) I p 1 , q 1 a ( φ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( φ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) .
Multiplying both sides of (17) by I p 1 , q 1 a ϕ ( a b p 1 ) , we obtain
I p 1 , q 1 a ϕ ( a b p 1 ) I p 1 , q 1 a φ ( a b p 1 ) I p 2 , q 2 c ( ψ f g ) ( c d p 2 ) + I p 1 , q 1 a ( φ f g ) ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) I p 1 , q 1 a ϕ ( a b p 1 ) [ I p 1 , q 1 a ( φ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( φ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) ] .
By substituting u = ϕ and v = ψ in (13), we have
I p 1 , q 1 a ϕ ( a b p 1 ) I p 2 , q 2 c ( ψ f g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ f g ) ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) I p 1 , q 1 a ( ϕ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) .
Multiplying both sides of (19) by I p 1 , q 1 a φ ( a b p 1 ) , we obtain
I p 1 , q 1 a φ ( a b p 1 ) I p 1 , q 1 a ϕ ( a b p 1 ) I p 2 , q 2 c ( ψ f g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ f g ) ( a b p 1 ) I p 2 , q 2 c ψ ( c d p 2 ) I p 1 , q 1 a φ ( a b p 1 ) [ I p 1 , q 1 a ( ϕ f ) ( a b p 1 ) I p 2 , q 2 c ( ψ g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ g ) ( a b p 1 ) I p 2 , q 2 c ( ψ f ) ( c d p 2 ) ] .
Putting u = ϕ and v = φ in (13) and then multiplying both sides by I p 1 , q 1 a ψ ( a b p 1 ) , we get
I p 1 , q 1 a ψ ( a b p 1 ) I p 1 , q 1 a ϕ ( a b p 1 ) I p 2 , q 2 c ( φ f g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ f g ) ( a b p 1 ) I p 2 , q 2 c φ ( c d p 2 ) I p 1 , q 1 a ψ ( a b p 1 ) [ I p 1 , q 1 a ( ϕ f ) ( a b p 1 ) I p 2 , q 2 c ( φ g ) ( c d p 2 ) + I p 1 , q 1 a ( ϕ g ) ( a b p 1 ) I p 2 , q 2 c ( φ f ) ( c d p 2 ) ] .
Inequality (16) can obtained by combining (18), (20), and (21). We accomplish the proof. □
Remark 2.
(i)
Theorem 4 is reversed in the following cases.
(a)
The functions f and g are asynchronous on J K .
(b)
The functions ϕ , φ , and ψ are non-positive on J K .
(c)
Two of the functions ϕ , φ , and ψ are non-negative, and the third one is non-positive on J K .
(ii)
Theorem 3.4 in [22] is a special case of Theorem 4, when p 1 = p 2 = 1 .
Theorem 5.
Let f , g , h be continuous and synchronous functions on J K and let u : J K [ 0 , ) be a continuous function. Then,
I a p 1 , q 1 u ( a b p 1 ) I p 2 , q 2 c ( u f g h ) ( c d p 2 ) + I p 1 , q 1 a ( u h ) ( a b p 1 ) I p 2 , q 2 c ( u f g ) ( c d p 2 ) + I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c ( u h ) ( c d p 2 ) + I p 1 , q 1 a ( u f g h ) ( a b p 1 ) I p 2 , q 2 c u ( c d p 2 ) I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( u g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f h ) ( a b p 1 ) I p 2 , q 2 c ( u g ) ( c d p 2 ) + I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( u f h ) ( c d p 2 ) + I p 1 , q 1 a ( u g h ) ( a b p 1 ) I p 2 , q 2 c ( u f ) ( c d p 2 ) .
Proof. 
Let f , g , h be continuous and synchronous functions on J K . Then for each α , β J K , ( f ( α ) f ( β ) ) ( g ( α ) g ( β ) ) ( h ( α ) + h ( β ) ) 0 . Equivalently,
f ( α ) g ( α ) h ( α ) + f ( β ) g ( β ) h ( β ) + f ( α ) g ( α ) h ( β ) + f ( β ) g ( β ) h ( α ) f ( α ) g ( β ) h ( α ) + f ( α ) g ( β ) h ( β ) + f ( β ) g ( α ) h ( α ) + f ( β ) g ( α ) h ( β ) .
Multiplying both sides of (23) by u ( α ) and ( p 2 , q 2 ) -integrating the resulting inequality with respect to α from c to c d p 2 , we obtain
I p 2 , q 2 c ( u f g h ) ( c d p 2 ) + f ( β ) g ( β ) h ( β ) I p 2 , q 2 c u ( c d p 2 ) + h ( β ) I p 2 , q 2 c ( u f g ) ( c d p 2 ) + f ( β ) g ( β ) I p 2 , q 2 c ( u h ) ( c d p 2 ) g ( β ) I p 2 , q 2 c ( u f h ) ( c d p 2 ) + g ( β ) h ( β ) I p 2 , q 2 c ( u f ) ( c d p 2 ) + f ( β ) I p 2 , q 2 c ( u g h ) ( c d p 2 ) + f ( β ) h ( β ) I p 2 , q 2 c ( u g ) ( c d p 2 ) .
Multiplying both sides of (24) by u ( β ) and ( p 1 , q 1 ) -integrating the resulting inequality, with respect to β from a to a b p 1 , we get
I p 1 , q 1 a u ( a b p 1 ) I p 2 , q 2 c ( u f g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f g h ) ( a b p 1 ) I p 2 , q 2 c u ( c d p 2 ) + I p 1 , q 1 a ( u h ) ( a b p 1 ) I p 2 , q 2 c ( u f g ) ( c d p 2 ) + I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c ( u h ) ( c d p 2 ) I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( u f h ) ( c d p 2 ) + I p 1 , q 1 a ( u g h ) ( a b p 1 ) I p 2 , q 2 c ( u f ) ( c d p 2 ) + I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( u g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f h ) ( a b p 1 ) I p 2 , q 2 c ( u g ) ( c d p 2 ) ,
which is inequality (22). The proof is complete. □
Theorem 6.
Let f , g , h be continuous and synchronous functions on J K and let u , v : J K [ 0 , ) be continuous functions. Then,
I p 1 , q 1 a u ( a b p 1 ) I p 2 , q 2 c ( v f g h ) ( c d p 2 ) + I p 1 , q 1 a ( u h ) ( a b p 1 ) I p 2 , q 2 c ( v f g ) ( c d p 2 ) + I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c ( v h ) ( c d p 2 ) + I p 1 , q 1 a ( u f g h ) ( a b p 1 ) I p 2 , q 2 c v ( c d p 2 ) I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( v g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f h ) ( a b p 1 ) I p 2 , q 2 c ( v g ) ( c d p 2 ) + I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( v f h ) ( c d p 2 ) + I p 1 , q 1 a ( u g h ) ( a b p 1 ) I p 2 , q 2 c ( v f ) ( c d p 2 ) .
Proof. 
Let f , g , h be continuous and synchronous functions on J K . Then for each α , β J K , ( f ( α ) f ( β ) ) ( g ( α ) g ( β ) ) ( h ( α ) + h ( β ) ) 0 . This implies that
f ( α ) g ( α ) h ( α ) + f ( β ) g ( β ) h ( β ) + f ( α ) g ( α ) h ( β ) + f ( β ) g ( β ) h ( α ) f ( α ) g ( β ) h ( α ) + f ( α ) g ( β ) h ( β ) + f ( β ) g ( α ) h ( α ) + f ( β ) g ( α ) h ( β ) .
Multiplying both sides of (26) by v ( α ) and ( p 2 , q 2 ) -integrating the resulting inequality with respect to α from c to c d p 2 , we obtain
I p 2 , q 2 c ( v f g h ) ( c d p 2 ) + f ( β ) g ( β ) h ( β ) I p 2 , q 2 c v ( c d p 2 ) + h ( β ) I p 2 , q 2 c ( v f g ) ( c d p 2 ) + f ( β ) g ( β ) I p 2 , q 2 c ( v h ) ( c d p 2 ) g ( β ) I p 2 , q 2 c ( v f h ) ( c d p 2 ) + g ( β ) h ( β ) I p 2 , q 2 c ( v f ) ( c d p 2 ) + f ( β ) I p 2 , q 2 c ( v g h ) ( c d p 2 ) + f ( β ) h ( β ) I p 2 , q 2 c ( v g ) ( c d p 2 ) .
Multiplying both sides of (27) by u ( β ) and ( p 1 , q 1 ) -integrating the resulting inequality with respect to β from a to a b p 1 , we get
I p 1 , q 1 a u ( a b p 1 ) I p 2 , q 2 c ( v f g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f g h ) ( a b p 1 ) I p 2 , q 2 c v ( c d p 2 ) + I p 1 , q 1 a ( u h ) ( a b p 1 ) I p 2 , q 2 c ( v f g ) ( c d p 2 ) + I p 1 , q 1 a ( u f g ) ( a b p 1 ) I p 2 , q 2 c ( v h ) ( c d p 2 ) I p 1 , q 1 a ( u g ) ( a b p 1 ) I p 2 , q 2 c ( v f h ) ( c d p 2 ) + I p 1 , q 1 a ( u g h ) ( a b p 1 ) I p 2 , q 2 c ( v f ) ( c d p 2 ) + I p 1 , q 1 a ( u f ) ( a b p 1 ) I p 2 , q 2 c ( v g h ) ( c d p 2 ) + I p 1 , q 1 a ( u f h ) ( a b p 1 ) I p 2 , q 2 c ( v g ) ( c d p 2 ) ,
which is inequality (25). The proof is complete. □
Remark 3.
(i)
It may be noted that inequalities in Theorem 5 and 6 are reversed when functions f , g , and h are asynchronous.
(ii)
Theorem 5 can obtained from Theorem 6 by letting u = v .
(iii)
If we take p 1 = 1 and p 2 = 1 in Theorem 5 and 6, then they reduce to ([22], Theorems 3.6 and 3.7), respectively.
In the next theorem, we give some inequalities of Fejér-type inequalities by applying ( p , q ) -calculus to the weighted Chebyshev-type inequality.
Theorem 7.
Let f : J R be a twice ( p , q ) -differentiable with a D p , q 2 f -integrable on J. Assume that a D p , q 2 f is non-constant and m a D p , q 2 f M . Then
M p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) + B q p 2 ( b a ) f a b p q + 1 p ( b a ) f ( a ) p + q p 3 a a b p f a x q 2 a d p , q x m p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) + A ,
where
A = ( b a ) a D p , q f ( a b p ) m p 2 ( b a ) p + q 1 p f ( a b p q ) f ( a ) × 1 p f ( a b p q ) f ( a ) ( b a ) a D p , q f ( a ) + m p q ( b a ) p + q a D p , q f ( a b p ) a D p , q f ( a ) m p ( b a ) ,
and
B = ( b a ) a D p , q f ( a b p ) M p 2 ( b a ) p + q 1 p f ( a b p q ) f ( a ) × ( b a ) a D p , q f ( a ) + M p q ( b a ) p + q 1 p f ( a b p q ) f ( a ) M p ( b a ) a D p , q f ( a b p ) a D p , q f ( a ) .
Proof. 
Observe that if g and h are continuous asynchronous functions on J and ϕ is a non-negative continuous function, then Lemma 3 yields
I p , q a ϕ ( a b p ) I p , q a ( ϕ g h ) ( a b p ) + I p , q a ϕ ( a b p ) I p , q a ( ϕ g h ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) I p , q a ( ϕ h ) ( a b p ) + I p , q a ( ϕ g ) ( a b p ) I p , q a ( ϕ h ) ( a b p ) .
That is,
I p , q a ϕ ( a b p ) I p , q a ( ϕ g h ) ( a b p ) I p , q a ( ϕ g ) ( a b p ) I p , q a ( ϕ h ) ( a b p ) .
By Lemma 2, it implies that
Ω : = a a b p ( x a ) ( b x ) a D p , q 2 f ( x ) a d p , q x = q p 2 ( b a ) f a b p q + 1 p ( b a ) f ( a ) p + q p 3 a a b p f a x q 2 a d p , q x .
Since a D p , q 2 f is non-constant and m a D p , q 2 f M , we obtain
a a b p a D p , q 2 f ( x ) m a d p , q x > 0 and a a b p M a D p , q 2 f ( x ) a d p , q x > 0 .
Consider
a a b p ( x a ) ( b x ) a D p , q 2 f ( x ) m a d p , q x = Ω m a a b p ( x a ) ( b x ) a d p , q x = Ω m p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) ,
and
a a b p ( x a ) ( b x ) M a D p , q 2 f ( x ) a d p , q x = M a a b p ( x a ) ( b x ) a d p , q x Ω = M p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) Ω .
Observe that x a and b x are continuous asynchronous functions on J.
Substituting g , h , ϕ in (28) by x a , b x , and a D p , q 2 f ( x ) m , respectively, we obtain
a a b p ( x a ) ( b x ) a D p , q 2 f ( x ) m a d p , q x a a b p ( x a ) a D p , q 2 f ( x ) m a d p , q x a a b p ( b x ) a D p , q 2 f ( x ) m a d p , q x a a b p a D p , q 2 f ( x ) m a d p , q x .
Then, a direct calculation shows us that
a a b p a D p , q 2 f ( x ) m a d p , q x = a D p , q f ( a b p ) a D p , q f ( a ) m p ( b a ) .
Consider
a a b p ( x a ) a D p , q 2 f ( x ) m a d p , q x = a a b p ( x a ) a D p , q a D p , q f ( x ) m x a d p , q x = x a p a D p , q f ( x ) m x a a b p a a b p a D p , q f ( a x q ) m ( a x q ) a D p , q x a p a d p , q x
= a b p a p a D p , q f ( a b p ) m ( a b p ) 1 p a a b p a D p , q f ( a x q ) m ( a x q ) a d p , q x = ( b a ) a D p , q f ( a b p ) m p 2 ( b a ) p + q 1 p f ( a b p q ) f ( a ) ,
and
a a b p ( b x ) a D p , q 2 f ( x ) m a d p , q x = a a b p ( b x ) a D p , q a D p , q f ( x ) m x a d p , q x = a b p x p a D p , q f ( x ) m x a a b p a a b p a D p , q f ( a x q ) m ( a x q ) a D p , q a b p x p a d p , q x = a b p a p a D p , q f ( a ) m a + 1 p a a b p a D p , q f ( a x q ) m ( a x q ) a d p , q x = 1 p f ( a b p q ) f ( a ) ( b a ) a D p , q f ( a ) + m p q ( b a ) p + q .
By substituting (31)–(34) into (29), we get
Ω m p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) ( b a ) a D p , q f ( a b p ) m p 2 ( b a ) p + q 1 p f ( a b p q ) f ( a ) × 1 p f ( a b p q ) f ( a ) ( b a ) a D p , q f ( a ) + m p q ( b a ) p + q a D p , q f ( a b p ) a D p , q f ( a ) m p ( b a ) .
Replacing g , h , ϕ in (28) by x a , b x , and M a D p , q 2 f ( x ) , respectively, we obtain
a a b p ( x a ) ( b x ) M a D p , q 2 f ( x ) a d p , q x a a b p ( x a ) M a D p , q 2 f ( x ) a d p , q x a a b p ( b x ) M a D p , q 2 f ( x ) a d p , q x a a b p M a D p , q 2 f ( x ) a d p , q x .
Then, a direct calculation shows us that
a a b p M a D p , q 2 f ( x ) a d p , q x = M p ( b a ) a D p , q f ( a b p ) a D p , q f ( a ) .
Consider
a a b p ( x a ) M a D p , q 2 f ( x ) a d p , q x = a a b p ( x a ) a D p , q M x a D p , q f ( x ) a d p , q x = x a p M x a D p , q f ( x ) a a b p a a b p M ( a x q ) a D p , q f ( a x q ) a D p , q x a p a d p , q x = a b p a p M ( a b p ) a D p , q f ( a b p ) 1 p a a b p M ( a x q ) a D p , q f ( a x q ) a d p , q x = ( b a ) M p 2 ( b a ) p + q a D p , q f ( a b p ) + 1 p f ( a b p q ) f ( a ) ,
and
a a b p ( b x ) M a D p , q 2 f ( x ) a d p , q x = a a b p ( b x ) a D p , q M x a D p , q f ( x ) a d p , q x = a b p x p M x a D p , q f ( x ) a a b p a a b p M ( a x q ) a D p , q f ( a x q ) a D p , q a b p x p a d p , q x = a b p a p M a a D p , q f ( a ) + 1 p a a b p M ( a x q ) a D p , q f ( a x q ) a d p , q x = ( b a ) a D p , q f ( a ) + M p q ( b a ) p + q 1 p f ( a b p q ) f ( a ) .
By substituting (36)–(39) into (30), we get
M p 2 q 2 ( b a ) 3 ( p + q ) ( p 2 + p q + q 2 ) Ω 1 p f ( a b p q ) f ( a ) ( b a ) a D p , q f ( a b p ) M p 2 ( b a ) p + q × ( b a ) a D p , q f ( a ) + M p q ( b a ) p + q 1 p f ( a b p q ) f ( a ) M p ( b a ) a D p , q f ( a b p ) a D p , q f ( a ) .
By combining (35) and (40), we obtain the required inequality which accomplishes the proof. □
Corollary 1.
Let f : J R be a twice q-differentiable with a D q 2 f integrable on J. Assume that a D q 2 f is non-constant with m a D q 2 f M . Then
M q 2 ( b a ) 3 ( 1 + q ) ( 1 + q + q 2 ) + B q ( b a ) f a b q + ( b a ) f ( a ) 1 + q a b f a x q 2 a d q x m q 2 ( b a ) 3 ( 1 + q ) ( 1 + q + q 2 ) + A ,
where
A = ( b a ) a D q f ( b ) m ( b a ) 1 + q f ( a b q ) f ( a ) × f ( a b q ) f ( a ) ( b a ) a D q f ( a ) + m q ( b a ) 1 + q a D q f ( b ) a D q f ( a ) m ( b a ) ,
and
B = ( b a ) a D q f ( b ) M ( b a ) 1 + q f ( a b q ) f ( a ) × ( b a ) a D q f ( a ) + M q ( b a ) 1 + q f ( a b q ) f ( a ) M ( b a ) a D q f ( b ) a D q f ( a ) .

4. Conclusions

We established some inequalities of Chebyshev-type inequalities by using ( p , q ) -integral, such as Chebyshev inequalities and the Fejér-like inequalities. Our work improves the results of Chebyshev-type quantum integral inequalities. By taking q 1 and p = 1 , our results give classical inequalities. The ( p , q ) -integral inequalities deduced in the present research are very general and helpful in error estimations involved in various approximation processes. With these contributions, we hope these techniques and ideas established in this article will inspire the readers to explore the field of ( p , q ) -integral inequalities.

Author Contributions

Conceptualization, P.A. and S.K.N.; investigation, N.A., K.M.N. and K.N.; methodology, K.N.; validation, N.A., K.M.N., K.N., P.A. and S.K.N.; visualization, K.M.N., K.N., P.A. and S.K.N.; writing—original draft, N.A. and K.N.; writing—review and editing, K.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding support from the National Science, Research, and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank the referees for their valuable comments and helpful advice on our manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chebyshev, P.L. Sur les expressions approximati ves des integrales definies par les autres prises entre lesmemes limites. Proc. Math. Soc. Kharkov. 1882, 2, 93–98. [Google Scholar]
  2. Kuang, J.C. Applied Inequalities; Shandong Sciences and Technologie Press: Shandong, China, 2004. [Google Scholar]
  3. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin, Germany, 1970. [Google Scholar]
  4. Purohit, S.; Raina, R. Chebyshev-type inequalities for the Saigo fractional integrals and their q-analogues. J. Math. Inequal 2013, 7, 239–249. [Google Scholar] [CrossRef] [Green Version]
  5. Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
  6. Yang, W. Some new fractional quantum integral inequalities. Appl. Math. Lett. 2012, 25, 963–969. [Google Scholar] [CrossRef]
  7. Choi, J.; Agarwal, P. Some new Saigo type fractional integral inequalities and their q-analogues. Abstr. Appl. Anal. 2014, 2014, 11. [Google Scholar] [CrossRef] [Green Version]
  8. Baleanu, D.; Agarwal, P. Certain inequalities involving the fractional q-integral operators. Abstr. Appl. Anal. 2014, 2014, 10. [Google Scholar]
  9. Brahim, K.; Taf, S. Some fractional integral inequalities in quantum calculus. J. Fract. Calc. Appl. 2013, 4, 245–250. [Google Scholar]
  10. Chinchane, V.; Pachpatte, D. On some integral inequalities using Hadamard fractional integral. Malaya J. Mat. 2012, 1, 62–66. [Google Scholar]
  11. Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  12. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  13. Aslam, M.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal 2016, 10, 1013–1018. [Google Scholar]
  14. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
  15. Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
  16. Ahmad, B. Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94, 1–7. [Google Scholar] [CrossRef] [Green Version]
  17. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef] [Green Version]
  18. Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Comm. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
  19. Ahmad, B.; Nieto, J.J. On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 2012, 81. [Google Scholar] [CrossRef] [Green Version]
  20. Bukweli-Kyemba, J.D.; Hounkonnou, M.N. Quantum deformed algebra: Coherent states and special functions. arXiv 2013, arXiv:1301.0116v1. [Google Scholar]
  21. Bermudo, S.; Kórus, P.; Valdés, J.E.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
  22. Chen, F.; Yang, W. Some new Chebyshev-type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 2016, 21, 417–426. [Google Scholar]
  23. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  24. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
  25. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
  26. Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar] [CrossRef]
  27. Tunç, M.; Göv, E. (p,q)-integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 1–13. [Google Scholar]
  28. Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
  29. Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p,q)-Hermite–Hadamard inequalities for double integral and (p,q)-differentiable convex functions. Axioms 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
  30. Kalsoom, H.; Amer, M.; Junjua, M.D.; Hassain, S.; Shahxadi, G. (p,q)-estimates of Hermite–Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
  31. Hounkonnou, M.N.; Désiré, J.; Kyemba, B.R. (p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
  32. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
  33. Chu, Y.M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post-quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p,q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
  34. Kalsoom, H.; Rashid, S.; Tdrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum inequalities of Hermite–Hadamard-type associated with co-ordinated higher-order generalized strongly pre-index and quasi-pre-index mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
  35. Kunt, M.; Iscan, I.; Alp, N.; Sarikaya, M.Z. (p,q)-Hermite–Hadamard and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions. RACSAM 2018, 112, 969–992. [Google Scholar] [CrossRef]
  36. Ali, M.A.; Budak, H.; Kalsoom, H.; Chu, Y.M. Post-quantum Hermite–Hadamard inequalities involving newly defined (p,q)-integral. Authorea 2020. [Google Scholar] [CrossRef]
  37. Thongjob, S.; Nonlaopon, K.; Ntouyas, S.K. Some (p,q)-Hardy type inequalities for (p,q)-integrable functions. AIMS Math. 2020, 6, 77–89. [Google Scholar] [CrossRef]
  38. Wannalookkhee, F.S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite–Hadamard type inequalities for coordinated convex functions via (p,q)-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
  39. Arunrat, N.; Nakprasit, K.M.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Fejér type inequalities via (p,q)-calculus. Symmetry 2021, 13, 953. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Arunrat, N.; Nakprasit, K.M.; Nonlaopon, K.; Agarwal, P.; Ntouyas, S.K. Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions. Mathematics 2022, 10, 468. https://doi.org/10.3390/math10030468

AMA Style

Arunrat N, Nakprasit KM, Nonlaopon K, Agarwal P, Ntouyas SK. Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions. Mathematics. 2022; 10(3):468. https://doi.org/10.3390/math10030468

Chicago/Turabian Style

Arunrat, Nuttapong, Keaitsuda Maneeruk Nakprasit, Kamsing Nonlaopon, Praveen Agarwal, and Sotiris K. Ntouyas. 2022. "Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions" Mathematics 10, no. 3: 468. https://doi.org/10.3390/math10030468

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop