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Abstract: In this paper, we apply (p, q)-calculus to establish some new Chebyshev-type integral
inequalities for synchronous functions. In particular, we generalize results of quantum Chebyshev-
type integral inequalities by using (p, g)-integral. By taking p = 1 and q — 1, our results reduce to
classical results on Chebyshev-type inequalities for synchronous functions. Furthermore, we consider
their relevance with other related known results.
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1. Introduction

Let f,g : [a,b] — R be integrable functions and ¢, ¢ :
functions. The Chebyshev functional is defined by

[a,b] — (0,00) be integrable

17890 = ([ o) ax) ([ o fx)s00 a

+ (/a’h(p(x) dx) (/ﬂb 9(x)f()g(x) dx)
- (/Hb @(x)f(x) dx) (/ﬂh(j)(x)g(x) dx)

~ ([ ot ax) ([ oot ax), )
see [1] for more details.

We say that functions f and g are synchronous (asynchronous, respectively) on [a, b]
if (F(x) — £(1))(8(x) — g(y)) > 0 ((F(x) — (1)) (g(x) — g(y)) < 0, respectively) for each
x,y € [a,b]. It follows that T(f,g,¢,¢) > O(T(f,g ¢, ¢) < 0O, respectively) if f and g
are synchronous (asynchronous, respectively) on [a, ] (see, e.g., [2,3]). The Chebyshev
inequality can obtained from (1) by setting ¢ = ¢.

The Chebyshev functional (1) has attracted the attention of many researchers mainly
due to its applications in numerical quadrature, probability, transform theory, and sta-
tistical problems. Moreover, the Chebyshev functional (1) has been applied to some
integral inequalities by using known fractional integral operators, see [4-10] and the
references therein.
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Quantum calculus, also known as g-calculus, was introduced by the mathematician
Euler in the eighteenth century, studying calculus without limits, where classical mathe-
matical formulas are obtained as 4 — 1. Newton defined the number in g-infinite series.
The definite g-integral, known as the g-Jackson integral, is defined by F. H. Jackson [11,12]
in 1910. In quantum calculus, it has many applications in various fields of mathematics
and physics, specifically in hypergeometric functions, convexity function, orthogonal poly-
nomials, mechanics, number theory, and relativity theory. In [13], M. Aslam et al. obtained
quantum Ostrowski inequalities for the g-differentiable convex function. A. Aral et al. [14]
studied applications of g-calculus in operator theory, and H. Gauchman [15] obtained inte-
gral inequalities in g-calculus. B. Ahmad et al. [16-19] studied boundary-value problems
for nonlinear g-difference equations with any boundary conditions. In [20], J. D. Bukweli-
Kyemba and M. N. Hounkonnou studied quantum deformed algebra: coherent states and
special functions. S. Bermudo et al. [21] obtained g-Hermite-Hadamard inequalities for
general convex functions and F. Chen W. Yang [22] obtained some new Chebyshev-type
quantum integral inequalities on finite intervals. Furthermore, the fundamental knowledge
and theoretical concepts of quantum calculus are covered in the book written by V. Kac
and P. Cheung [23].

In 2013, J. Tariboon and S. K. Ntouyas [24] introduced the quantum calculus on finite
intervals. Next, they extended the Holder, Hermite-Hadamard, trapezoid, Ostrowski,
Cauchy-Bunyakovsky-Schwarz, Griiss, and Griiss-Cebygev integral inequalities to quan-
tum calculus on finite intervals in [25].

In 2016, M. Tung and E. Gov [26,27] introduced the (p, g)-derivative and (p, q)-integral
on finite intervals while proving some properties, and gave several inequalities of integral
via (p, q)-calculus. In recent years, many quantum integral inequalities on a finite interval
have been investigated more generally in (p, q)-calculus, which was first considered by
R. Chakrabarti and R. Jagannathan [28]. It is worth noting that g-calculus cannot be
directly retrieved by replacing g with g/p in g-calculus, but g-calculus may be recaptured
by setting p = 11in (p, g)-calculus. In [29], J. Prabseang et al. obtained (p, q)-Hermite—
Hadamard inequalities for double integral and (p, q)-differentiable convex functions. H.
Kalsoom et al. [30] obtained (p, 7)-estimates of Hermite—Hadamard-type inequalities for
coordinated convex and quasi-convex functions. In [31], M. N. Hounkonnou studied
(p,q)-calculus: differentiation and integration and P. N. Sadjung [32] studied (p, q)-Taylor
formula. Y. M. Chu et al. [33] obtained new post-quantum analogues of Ostrowski-type
inequalities using new definitions of left-right (p, q)-derivatives and definite integrals.
In [34], H. Kalsoom et al. obtained post-quantum Hermite-Hadamard type inequalities
associated with coordinated higher-order generalized strongly pre-index and quasi-pre-
index mappings. M. Kunt et al. [35] obtained (p, q)-estimates of Hermite-Hadamard-type
inequalities for midpoint type integral inequalities via convex and quasi convex function.
In addition, more results of (p, q)-calculus appear in [36-39] and the references cited therein.

Motivated by the results mentioned above, by using the four parameters of deforma-
tion (p1,4q1) and (p2, 92), we propose generalizing and extending some new Chebyshev
inequalities in g-integral to (p, q)-integral. Furthermore, we obtain their relevance with
other related known results. We hope that the ideas and techniques presented in this paper
will inspire interested readers working in this field.

2. Preliminaries

In this section, we present basic concepts of (p, 7)-calculus, which will be used in our
work. Throughout this paper, welet ] = [4,b] CR,K=[c,d] CR,0<g<p<1,0<gq; <
pi <1 (i =1,2) be constants, and we set ,b, = pb+ (1 — p)a,oby = qb+ (1 —q)a, d, =
pd+ (1 —p)c,axp = px + (1 —p)a,and ;x5 = gx + (1 —q)a.
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Definition 1 ([26,27]). The (p, q)-derivative of a continuous function f : ] — R at x, denoted by
aDypqf(x), is defined by

flaxp) = f(axg) . xAa
qu,qf(x) = (P*Q)(x*“)
lim aDpqf(x), X =a.
If 4Dy f (x) exists for all x € J, then f is (p, q)-differentiable on J.
By setting a = 0 in Definition 1, we obtain oDy 4f = Dp,4f, where D, ;f is defined by
flpx) = flax) .
Dpaf(x) =4 (P—=a)&)
lim Dy,f(x), x=0.
x—0

Incase p =1, ,Dpqf = 2D, f which is the g-derivative of the function f.

Example 1. For x € Jand n € N, we have

Dpa((x—a)) = £

Definition 2 ([26,27]). If f : ] — R is a continuous function and x € ], then the (p, q)-integral
of the function f for x, denoted by I . f(x), is defined by

Ipqf (x) = uxf(t) adpqt = (p—q)(x —a) i ZiJ(pZilx + (1 - pZil)a)

Moreover, if ¢ € (a, x), then the (p, q)-integral is defined by

[ F@adpat = [ 7@ adpat = [ Ft)adat.

If I} . f (x) exists for all x € ], then f is (p, q)-integrable on J.
Definition 2 reduces to the classical g-integral of the function f whena =0and p = 1.

Example 2. Define a function f : | — R by f(x) = kx, where k € R. Then

/f qt—/ Kt ady gt
== ,:O (G (1 pi)e)

k(x —a)(x—a(l—p—gq))
p+a ’

Theorem 1 ([26,27]). If f : | — R is a continuous function and ¢ € (a,x), then

0 [ aDpaf () syt = ()~ fla);

@) [ aDpaf (1) syt = £(x) = £(0).

Theorem 2 ([26,27]). If f, g : ] — R are continuous functions, x € |, and « € R, then
/ [f(t) +8(t) adpqt—/ f(t adpqt*/ t) adpqt;

(ii) / Qf (1) ot = a/a F() adpt;
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(i) [ F(pt+ (1= p)a)iDpag (1) adpgt = [(F) O ~ [ gat-+ (1= )a)uDpf (1) iyt

Lemma 1. If f,¢ : ] — R are continuous functions with f(t) < g(t) for all t € ], then,
for x € [a, pb+ (1 — p)a], we have

/ f(t) Pfit</ adp,qt. @)

n

_ 4
pn+1

n
Proof. Let x € [a, pb + (1 — p)a]. Then Z+1 X+ >a € [a,b]. Because f,g: | —

R are continuous functions with f(t) < g(t) forall t € ], we get

q" q" q" q"
f<pn+1x+<1_pn+1>“ Sg(anX—l-(l—an)u). ®)

n

q

We multiply (3) by (p —¢)(x —a) - il

> 0 and then sum 7 from zero to infinity to

obtain

/ﬂxﬂt) adpqgt = (p—q)(x—a)

[
R~
+:
+
“~~
7 N
B~y
I
+3
X

=
+
7 N
—_

[
A~
R~
+::
+
N———
pY
N———

3
Il
o
=

=
il gk
S
BB
+ =
oA
oqQ
/N
S
BB
-+ =
L

=
_|_
7N
—_

|
=
BRSNS
+ =
A
N—
_
N——

<(p—=9)(x—a)

—/ adpqt,

which is inequality (2). This complete the proof. O

The next lemma is due to N. Arunrat et al. [39].

Lemma 2 ([39]). If f : ] — R is a twice (p, q)-differentiable function with an,,qf (p.q)-
integrable on |, then

[ G @)~ D3 () atyx

= %(b —a)f (abpg) + ;(b —a)f(a) - (p +q) /;bpf<gxqz) adpqx.

3. Main Results

In this section, we establish some new Chebyshev-type integral inequalities via (p, q)-
calculus. From now on, we assume that all of (p, g)-integral exists, and let

abp
g (4)abp) = [ u(B)F(8) atpt

and

18 f)aby) = [ W O0) st

Lemma 3. Let f and g be continuous and synchronous functions on | and let u,v : | — [0,00) be
continuous functions. Then

I qu(abp)Ip 0 (0f &) (abp) + I 40(abp) I 4 (1) (abp)
> Iz,q(“f)(abp)lz,q(vg)(abp) + I;,q(vf)(abp)lz,q(ug)(abp)- 4
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Proof. Since f and g are continuous and synchronous functions on [a, b], we get for each

a, B € [a,b] that (f(a) — f(B))(g(a) — g(B)) = 0. Equivalently,
f(a)g(a) + f(B)g(B) = f(a)g(B) + f(B)g(a). ®)

Multiplying both sides of (5) by v(«) and then (p, q)-integrating the resulting relation
with respect to a from a to abp, we obtain

Ip,q(vf8)(abp) + f(B)S(B) 0 abp) = 8(B)Ipq(0f) (abp) + f(B)Ip,q(08) (abyp).  (6)

Multiplying both sides of (6) by u(B) and then (p, q)-integrating the resulting relation
with respect to  from a to ,bp, we obtain

Iz’qu(abp)lf,,q(vfg) (abp) + If,,qv(ubp)lz’q(ufg) (abp)
> I;Z,q(“f)(abp)lz,q(vg)(ubp) + Iz,q@f)(ubpﬂz,q(ug)(ubp)/

which is inequality (4). The proof is complete. [

Theorem 3. Let f and g be continuous and synchronous functions on [ and let ¢, ¢, ¢ : | — [0, 00)
be continuous functions. Then,

ZIZ,q(P(ubp) [Iz,qﬁo(abp)lz,q(lpfg)(ab )"‘Iﬂ (ﬂbP)I?)q q’fg)(ﬂbp)}
+215,09(abp) I g (abp) I o (6£8) (abp)
> I8 1@ (abp) [ 18, () abp) I 4 (92) aby)

15y (0 by 5 g (9) (aby) |

180 @(abyp) [ 150 (9 (abp) Ih1 (92) (aby)

15 () aby) 15 (09) aby) |

15,0 (abp) [ 15, (9) (b 154 (92) (abp)

+ 18 () (abp) 50 (63) (aby) | @)

Proof. Replacing u and v in (4) by ¢ and v, respectively, we get

Lp,q9(abp) I (01 8) (abp) + I g (abp) I g (9£8) (abp)
> Ip,g(9f) (abp) Iy g ($8) (abp) + I g () (abp) 1,4 (98) (ap)- ®)

Multiplying both sides of (8) by I} ,¢(aby), we obtain

I (abp) [ 540 (abp) 5 4 (92 (abp) + I (abp) 18, (9£2) (aby) |
> 15,09 (abp) | 50 (9) (abp) 54 (92) (ab)
15 (9F) (abp) 5 (98) (aby) . ©)
By substituting u = ¢ and v = ¢ in (4), we have

Iz,q¢(ﬂbp)lz,q(l/’f8)(abp) + Iz,q¢(abp)1;,q(¢f8) (abp)
> 15 (@) (abp) 1 5 (98) (abp) + 1 4 (9 1) (abp) 154 () (abp)- (10)
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Multiplying both sides of (10) by I} ,¢(aby), we obtain
15 @(abyp) | 18,00 (abp) 10 (9£8) (abp) + I8, (abp) 5 4 (6£) (abp) |
> 180 0(aby) [ g (0F) (bp) 5, (92) (aby)
+ 15,0 (9 (abp) 15,1 (9) (aby) | (1

Putting u = ¢ and v = ¢ in (4) and multiplying both sides by I} ;¢ (abp), we get

T q(aby) | 150 abp) 15 4 (9£2) (ap) + I @(abyp) 13 (92) (ubp)
> 18, 0(abp) [ 15,0 (9) (abp) 12 (98) (aby)
+ 17,0(9)(abp) 11,1 (9) (abyp) (12)

By combining (9), (11), and (12), we obtain inequality (7), which accomplishes the
proof. O

Remark 1.
(i)  Lemma 3 and Theorem 3 are reversed in the following cases.

(a)  The functions f and g are asynchronous on |.
(b)  The functions ¢, ¢, and p are non-positive on J.
(c)  Two of the functions ¢, ¢, and ¢ are non-negative and the third one is non-positive on J.

(i)  If we take p = 1 in Theorem 3, then it reduces to Theorem 3.2 in [22].

Lemma 4. Let f and g be continuous and synchronous functions on | U K and let u,v: JUK —
[0, 00) be continuous functions. Then,

p1 Uk (abp )1 P2, qz(vfg)( dp,) + I.gl ¢11(”fg)(ﬂbpl)llcﬂzfﬁv(cdpz)
> Iy, (Uf) (abpy ) Iy 4, (08) (cdpy)
+I§16]1( ug) (abp,) pzqz( of)(cdp,)- (13)

Proof. Since f and g are continuous and synchronous functions on | U K, we get for all
%, € JUK that (f(2) — £(8))(3(a) — g()) = 0. Equivalently,

fla)g(@) + f(B)g(B) = f(a)g(B) + f(B)g(a). (14)

Multiplying both sides of (14) by v(B) and then (p»,q2)-integrating the resulting
inequality with respect to  from c to .dp,, we obtain

f(@)g(@) T, 0,0(cdpy) + Iy g, (0F8) (cdlpy)
> f(@)Ip, q,(v8) (cdp,) + 8 (&) Iy, g, (0 ) (cdlpy)- (15)

Multiplying both sides of (15) by u(a) and then (pj,q;)-integrating the resulting
inequality with respect to « from a to ;b,,, we obtain

p1 q1 (ufg)( ) ;Cvz,qz ( dpz) + Igl A1 ( blﬂl) ;sz,qz(vfg)(cdpz)
> Igl ﬂl( f) (ﬂb ) P2.92 (Ug)( d ) + 1?11 q1 (ug) (ﬂbm)l;(;z,qz (Uf) (Cdpz)/

which is inequality (13). The proof is complete. [

Theorem 4. Let f and g be continuous and synchronous functions on | UK and let ¢, ¢, :
JUK — [0, 00) be continuous functions. Then,
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Iy $ (o) [ Ty 9t ) B, (0F9) (cps) + 285 g, @(abp, ) (9F8) (chp)
18, (9F8) (b, ) 9 (el |
18, (81) (abpy) |15, 4, @(abp ) IE g, (el
+ Iy g 9 (abp, ) Iy g, (P(Cdpz)}

> 180 9 (abp) [ 18,0, (0F) by ) (92) (e

18 (92) b)) g () (e,
18 P (abp) [ Ty (D) by ) 6, (92) ()
180 (98) (abpy ) T 0, (9) (clp)
1 9 abpy) [ 18,00 (BF) (b ) T, (93) (e
180 (98) (abpy ) I, (9) () . (16)

Proof. Putting u = ¢ and v = ¢ in (13), we get

15 o ®(abpy) 15, 0y (WF2) (cdp,) + I o (9£8) (abp, )5, 0, (cdlp,)
Z IZ1 Dll(q)f)(a DI P2, qz(l/Jg)( 2)
+ I;;I/‘h (98)(abp; )1 P2, q2<lpf)( 2)- (17)

Multiplying both sides of (17) by I;l,‘h(p(ub,g1 ), we obtain
oy $ (o) [ T, @b, ) I, (0F9) () + T8 g, (9£2) () 5, (el |
2 Izl,ql(rb(ﬂbpl) |:Izl,q1(q)f)(ab ) P2, qz(lpg)( )
+ Izl,ql((Pg)(ﬂbpl)lgciz,qZ(le)(Csz)} . (18)

By substituting u = ¢ and v = ¥ in (13), we have

Iy 9 (abpy ) 1, g, (01 &) (cpy) + 15, g, (@£8) (abpy ) I, g, (cdpy)
z 151 71 ((Pf)(ﬂ DI P2, qz(l/Jg)( 2)
+ IZMh (98) (abp)) I P2, qz<lpf)( 2)- (19)

Multiplying both sides of (19) by I} . ¢(abp, ), we obtain

p1 0 (P( bpl) [ P14 171¢( bm) P2, q2<lpfg)( P2) + 1;171 q1 ((Pfg)( bPl)I;Caz,qzlp(Cdpz)}
> 15,0, 9(abp) [ 15, 0, (8F) by, ) I, (92) (el
+ I;Z’l/fh (4)8) (“bpl)léz,qz(lpf)(cdpz)}' (20)

Putting u = ¢ and v = ¢ in (13) and then multiplying both sides by I} , ¥ (abp,),
we get
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iy (b, ) [ 18,0 (b ) I, (0F9) (cpa) + gy (9£8) (abp )T g, @(cdls )]

> 180 9 (abp) [ 1 00 () (abp ) I, (02) (cdlpy)

+ 150, (99) (abpy ) 15, 0, (9) (el |- 1)

Inequality (16) can obtained by combining (18), (20), and (21). We accomplish the
proof. O
Remark 2.

(i)  Theorem 4 is reversed in the following cases.

(a) The functions f and g are asynchronous on | U K.

(b)  The functions ¢, ¢, and  are non-positive on | UK.

(c)  Two of the functions ¢, ¢, and 1 are non-negative, and the third one is non-positive on
JUK.

(ii)  Theorem 3.4 in [22] is a special case of Theorem 4, when p; = py = 1.

Theorem 5. Let f, g, h be continuous and synchronous functions on ] UK and let u : JUK —
[0, 00) be a continuous function. Then,

% py gyt (abpy ) 1, 4, (Uf&R) (edpy ) + I, g, (h) (abp, )1, 4, (£ ) (edpy)
+ Ip g (f &) (abpy ) Iy, g, (uh) (e, ) + I, g, (uf 1) (abp ) I, g, (cdpy )
2 Ly g, (f) (ap, ) Iy g, (ugh) (edpy) + Iy g, (uf1) (abpy ) I, g, (ug) (s )
+ I, g, (48) (abpy ) 1, g, (uf ) (cdpy )
+ 15, gy (ugh) (abp, ) I, o, (1f) (cdp, ). (22)

Proof. Let f, g, h be continuous and synchronous functions on J U K. Then for each a, €

JUK, (f(a«) = £(B))(8(a) — g(B)) (h(a) + h(B)) = 0. Equivalently,

fla)g(@)h(a) + f(B)g(B)R(B) + f(a)g(a)h(B) + f(B)g(B)h(a)
> f(@)g(B)h(a) + f(@)g(B)1(B) + f(B)g(@)h(w) + f(B)g(@)h(B).  (23)
Multiplying both sides of (23) by u(a) and (py, 42)-integrating the resulting inequality

with respect to « from c to .dp,, we obtain
pzqz(ufgh)( dp2)+f(18) (:B)h(,B) pzqzu(c )
(IB) pqu(ufg)( Pz)+f( ) (IB) quz( )(d )

> 8(B) Iy g, (uf 1) (cdpy) +&(BIR(B) Iy 0, (1) (el )

+ f(B) Iy 0, (ugh) (cdpy ) + f(B)R(B) I, 0, (48) (cdlpy )- (24)

Multiplying both sides of (24) by u(B) and (p1, 41 )-integrating the resulting inequality,
with respect to B from a to ,b,,, we get

Pl nt u(abpy )T p2, qz(”fgh)(cdpz) + Izl,ql(”fgh)(abm)l;cvz,qz”(cdpz)
+ Izl,lh(uh) (abp,) ;’2 72 (ufg)(cdp,) + I;pql(”fg)( bp, ) ;Caz qz(”h)( dp,)
> 15, g, (ug) (abp, ) I, g, (uf 1) (cdpy) + I, 4, (ugh) (abp, ) I, 4, (uf) (cdpy)

+ Iy g, (f) (abpy ) I, g, (ugh) (cdlpy ) + I, g (uf 1) (abpy ) I, g, (48) (e, ),

which is inequality (22). The proof is complete. [
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Theorem 6. Let f, g, h be continuous and synchronous functions on | U K and let u,v : JUK —
[0, 00) be continuous functions. Then,

Iy, 9, 4(abpy) Iy g, (0F &) (clpy ) + Iy, g, (uh) (abp, ) I, 4, (01 8) (cdlpy )
+ L1y (UF8) (abpy ) Iy gy (V1) (cdlpy ) + T, g, (£ 81) (abpy ) I, 0,0 (cdlpy )
> Iy, gy () (abpy) Iy g, (081) (cdpy ) + I, g, (f 1) (abpy ) T, 4, (08) (cdlpy )
+ Ly a0 () (abpy ), g, (0F 1) (cdlpy ) + T, g, (ugh) (abpy ) Iy, g, (0 ) (el ) (25)

Proof. Let f, g, h be continuous and synchronous functions on J U K. Then for each a, €

JUK, (f(a) = £(B))(g(x) — g(B))(h(&) + h(B)) = 0. This implies that

fla)g(@)h(a) + fF(B)g(BR(B) + f(a)g(a)h(B) + f(B)g(B)h(a)
> f(@)g(B)h(a) + f(@)g(B)(B) + f(B)g(@)h(e) + fF(B)g(@)h(B).  (26)
Multiplying both sides of (26) by v(a) and (p2, g2)-integrating the resulting inequality
with respect to « from c to .dp,, we obtain

Ly 0, (0f81) (clpy) + f(B)S(B)(B) Iy 0,0 (cdlpy)

+h(B) 1,0, (0f &) (cdpy) + F(B)S(B) Ly 95 (V1) (cdlpy )

> 8(B) Iy g, (0f 1) (cApy) + (BY(B) Iy, g, (0 ) (e, )

+ f(B) Iy g, (087) (cdpy) + F(B)R(B) L}, 4, (08) (cdlpy )- (27)

Multiplying both sides of (27) by u(p) and (p1, 41)-integrating the resulting inequality
with respect to  from a to ,by,, we get

I, g4 (abp; ) I, g, (0F &) (cdlpy ) + I, g, (ufgT) (apy ) I, 5, 0(cpy)
+ Ly g0 (uh) (abpy ) T, 0, (0F8) (cdlpy ) + I, g, (45 8) (abpy ) I, g, (O1) (e, )
> Ip, g, (48) (abpy ) Iy, g, (0f 1) (cdpy) + 1, g, (4gH) (abpy ) I, g, (0 ) (cAlpy)
+ Ly a0 (W) (abpy ) 1, g, (081) (cdlpy ) + T, g, (1F 1) (abpy ) Iy, g, (08) (cdlpy ),

which is inequality (25). The proof is complete. O

Remark 3.

(i) It may be noted that inequalities in Theorem 5 and 6 are reversed when functions f, g, and h
are asynchronous.

(ii)  Theorem 5 can obtained from Theorem 6 by letting u = v.

(iii) If we take p1 = 1 and py = 1 in Theorem 5 and 6, then they reduce to ([22], Theorems 3.6
and 3.7), respectively.

In the next theorem, we give some inequalities of Fejér-type inequalities by applying
(p, q)-calculus to the weighted Chebyshev-type inequality.

Theorem 7. Let f : | — R be a twice (p, q)-differentiable with aDrza,q f-integrable on ]. Assume
that HD;ZWf is non-constant and m < L,D%,,qf < M. Then

Mp?q*(b —a)® q, 1
(p+q)(p>+ pq +q%) tB< pz(b a)f (abpq) + p(b a)f(a)
aby
_(P;q)/a fa) adpar
mp*q*(b — a)®

< + A,
(p+q)(p*+pq +4%)
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where
201
A= [0=0) (:Dpaf ) - “EC=I) - 2 (F(y) - )]
L Fabpe) — F(@)) = (b — a) Dy f(a) + ™PIL—5)
% LP p+q
aDpqf(abp) — aDpqf(a) —mp(b— a) ’
and
2(1
= [0 =a) (oDpaflaty) = TEC=) =2 (1) - £(0)]

_1
p
{(b —a) (aDp,qf(a) + ]\/ng(fq_a)) - :?(f(abpq> - f(a))]
Mp(b—a) — (qu,qf(ubp) - aDp,qf(‘l)) '

Proof. Observe that if ¢ and h are continuous asynchronous functions on | and ¢ is a
non-negative continuous function, then Lemma 3 yields

X

15,q#(abp) Ly g (981) (abp) + L 0@ (abp) I 4 (981) (abp)
< I;,q((Pg) (tlbp)lz,q ((Ph) (ﬂbp) + Iz,q((Pg) (ﬂbp)lz,q((Ph)(abP)'

That is,
Iz,q‘i’(abp)lz,q(‘l’gh)(ubp) < Iz,q(‘l’g)(ubp)lg,q(‘l’h)(abp)- (28)
By Lemma 2, it implies that
abp 2
Q= / (x = @) (b — X)aD2, £ (%) adpgx
a

= %(b - “)f(ﬂbpq) + ;(b —a)f(a) — (P};Zq) /uabpf(axqz> adp,qx.

Since aD;z,l,7 f is non-constant and m < aD%,q f < M, we obtain

nhp ‘abp
/a (an,,qf(x) — m) adpgx >0 and /u (M — ,;waf(x)) adpgx > 0.

Consider

/aabl’ (x —a)(b—x) (,ZD}ZWf(x) — m) alpgx = Q —m /ﬂﬂb;ﬂ (x —a)(b—x) adpgx

-0 — mPZqZ(b — a)3 (29)

B (p+a)(p*>+pg+q%)

and

abp “bp
/a b (x —a)(b—x) (M - aD;%,qf(x)) adpgx = M/a (x —a)(b—x) qdpgx — Q)
_ MpPP(b—a)P
(p+a) (P +pa+9?) o (0)

Observe that x — a and b — x are continuous asynchronous functions on J.
Substituting g, 11, ¢ in (28) by x —a,b — x, and “D%i,q f(x) — m, respectively, we obtain
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/a (x —a)(b—x) (aD2 g f(x) = m) dp,qgx
) (/:bp(x —a) <ﬂDf,,qf(x) —;z) adp,qx> (/ﬂ”hl’(b —x) (an,,qf(x) — m) adp,qx) | o
/a p (anmf(x) — m) atp,qgx
Then, a direct calculation shows us that
/aabp (an,,qf(x) — m) ap,gx = (aDpgf(abp) — aDpyf(a)) — mp(b — a). (32)
Consider
/ b (x —a) (quqqu(x) m) atlp g
= / bp(x —)aDypg(aDpgf (x) —mx) adpgx
— {x ; a (aDpqf (x) — mx)]jp
_/aabp( Dyp,qf(axq) —m( xq))<qu(x a>) dp,qx
= (abppﬂ> (qu,qf( bp) —m( bp))
- ;/:bn( Dypqf(axq) = m(aXy)) adpqx
= -0) (:Dpaf () — "2 L ) - fl0) )
and
/ (b—x) (aD?,,qf(x) - m) adp,gx
_ /a bp(b —x)aDp,q(aDpgf (x) — mx) adpgx
abp — x bp
[ (aDpaf(x) mx)} )
- / ” («Dp.af (axq) — m(axq)) (aDM (gb,,p x)) adpqX
= (”bpp a) (aDp,qf(a) — ma)
" ?17 /ﬂ“bp (aDpgf (axq) —m(aXg)) adpgx
= 2 (Fabyg) ~ F@) = (0 =) (uDpafa) + P ) &
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By substituting (31)—(34) into (29), we get

mp*q’ (b — a)®

(PP pr )
< [=0) (:Dpartaty) - L= - 2 (uby) - )|

1 mpq(b — a)
2 (Flbyn) — £10)) = 6= ) (uDpaf@)+ “PC= )]

aDpqf(abp) —aDpgqf(a) —mp(b—a)

Replacing g, , ¢ in (28) by x —a,b — x, and M — ,D;, , f(x), respectively, we obtain

mp?(b —

X

(35)

/u"hp(x—a)(b—x)( — oD} f (x )) adpqx
(/u”br’ (x — ﬂ)( —aDj qf( )) adp, qx) (fabp(b - x)( —aDy ’?f( )) ”dp’qx>
/uabp( —aDj  f(x )) adp X |

Then, a direct calculation shows us that

<

(36)

/aabp( — D30 f(x)) adpgx = Mp(b— ) = (:Dpaf (abp) —aDpaf(a)).  (37)
Consider
/”b"(x_a)< —aDjpof(x )) dp,qgx
_/ x = a)aDypg(Mx = 4Dp,gf(x)) adlpqx

- [x;”(Mx—qu,qﬂx))lb”

- /ﬂﬂbp (M(axq) — aDp,qgf(axq)) (aDM(x ; a)) aflp,g
:
i

abp—a by
= ( pp ) (M(abp) = Dy f (abp)) — /a (M(axq) = aDp,qf (a%q)) adpgx

2(p —
= (b= o) (ML= — Dy )

;<f<abpq> ~f@), 39)

and
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abp
/a (b—x) (M — L,waf(x)> atlp,qgx
abp
= /a (b—x)aDypg(Mx — 4Dpgf(x)) adpqx
abp —x abp
abp aby — x
—/u (M(axq) _ﬂDprqf(ﬂxq))<aDP,q( pp >> adpgX
abp — abp
=- <ppa> (Ma — oDp,qf(a)) + ; /a (M(axq) — aDp,gf(a%q)) adlpqx
b —
= 6= 0)(aDpafla) + ML) (1) - f(0). )
By substituting (36)—(39) into (30), we get
Mp*gP(b—a)®
(p+a)(pP*+pi+q°)
1 ) — (b—a _Mpz(b—a)
< [2 (1) ~ £10)) = (0= 0) (sDpaf) - MELZ0)]
. 2o Mpglb—a) 1  fa
om0 (oppartor + M) - St - o] “

Mp(b—a) — (aDp,qf(abp) - aDp,qf(”))

By combining (35) and (40), we obtain the required inequality which accomplishes the
proof. O

Corollary 1. Let f : ] — R be a twice g-differentiable with aD% f integrable on |. Assume that
aD,%f is non-constant with m < uDgf < M. Then

Mg (b—a)’
(I+9)(1+9+4)

+B§qw—avuw)+@—HUM)—0+ﬂ[E7G%Qa%x

mg*(b — a)®
T (+q)(+q+4q?)

where
A::kb—a)QJ%f@)—nﬁé;;)>—(fQ%)—fW»}
(Flabs) — F(@)) — (b — a)(Dyf () + ™AL =2)
[ : aquw)—aqugaijmwta)Hq )]
and
5= [0-a) Dy - M=) (7)) - )|

(0= (oDys o)+ PED )~ (saty) - )]

M(b—a) — (aqu(b) - aqu(a))

X




Mathematics 2022, 10, 468 14 of 15

4. Conclusions

We established some inequalities of Chebyshev-type inequalities by using (p,q)-
integral, such as Chebyshev inequalities and the Fejér-like inequalities. Our work improves
the results of Chebyshev-type quantum integral inequalities. By takingg — 1 and p =
1, our results give classical inequalities. The (p, g)-integral inequalities deduced in the
present research are very general and helpful in error estimations involved in various
approximation processes. With these contributions, we hope these techniques and ideas
established in this article will inspire the readers to explore the field of (p,q)-integral
inequalities.
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