# Categories, Quantum Computing, and Swarm Robotics: A Case Study

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Swarms of Robots

#### 1.2. Ideal Swarms

- Can work in whatever scenario (e.g., on the ground, underwater, on-air);
- Can adapt to any possible adverse condition (during a storm, after an earthquake, a tsunami, an avalanche);
- Is able to communicate in any imaginable way (though laser, infrared light, visible light, radar, sonar);
- Is ready for whichever task (e.g., search and rescue, object retrieval, stacking together to perform a more complex task).

## 2. Theoretical Framework and Methods

- Signals transmitted from ${R}_{1}$ to ${R}_{2}$ and reactions of ${R}_{2}$ (term ${R}_{1}\ast {R}_{2}$),
- Signals transmitted from ${R}_{2}$ to ${R}_{1}$ and reactions of ${R}_{1}$ (term ${R}_{2}\ast {R}_{1}$), respectively.

OPENQASM 2.0; include “qelib1.inc” qreg q[3]; creg c[1]; //classic qubit for the measure //states are initialized as 0 by default. ry(pi/2) q[0]; // to obtain 0.5, 0.5 as amplitudes //x q[1]; // to obtain input amplitude 0.0, 1.0, that is, eigenstate |1> ry(1.2309594) q[1]; // for input amplitudes 0.7, 0.3 // 1.9106332 for input amplitudes 0.3, 0.7 barrier q[0], q[1], q[2]; ccx q[0], q[1], q[2]; x q[0]; x q[1]; ccx q[0], q[1],q[2]; x q[0]; x q[1]; barrier q[0], q[1], q[2]; measure q[2] -> c[0];

## 3. Results

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Delcourt, J.; Bode, N.W.; Denoöel, M. Collective Vortex Behaviors: Diversity, Proximate, and Ultimate Causes of Circular Animal Group Movements. Q. Rev. Biol.
**2016**, 91, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hemelrijk, C.H.; Hildenbrandt, H. Schools of fish and flocks of birds: Their shape and internal structure by self-organization. Interface Focus
**2012**, 2, 726–737. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hamann, H. Swarm Robotics: A Formal Approach; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future [Point of View]. Proc. IEEE
**2021**, 109, 1152–1165. Available online: https://hal.archives-ouvertes.fr/hal-03362874/document (accessed on 10 December 2021). [CrossRef] - Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI
**2020**, 7, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Eberhart, R.; Shi, Y.; Kennedy, J. Swarm Intelligence; The Morgan Kaufmann Series in Artificial Intelligence; Morgan Kaufman: Burlington, MA, USA, 2001. [Google Scholar]
- Bishop, J.M. Stochastic Searching Networks. In Proceedings of the 1st IEEE Conference Artificial Neural Networks, London, UK, 16–18 October 1989; Available online: http://www.reading.ac.uk/web/files/sse/sds-ssn.pdf (accessed on 10 December 2021).
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag.
**2001**, 4, 28–39. [Google Scholar] - Rosenberg, J.L. Human Swarms, a real-time method for collective intelligence. In Proceedings of the European Conference on Artificial Life, York, UK, 20–24 July 2015; pp. 658–659. [Google Scholar]
- Dong, X.; Sitti, M. Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. Int. J. Robot. Res.
**2020**, 39, 5. Available online: https://journals.sagepub.com/doi/full/10.1177/0278364920903107 (accessed on 10 December 2021). [CrossRef] - Preskill, J. Quantum computing 40 years later. In Feynman Lectures on Computation, 2nd ed.; Hey, A.J.G., Ed.; Taylor & Francis Group: Abingdon, UK, 2021. [Google Scholar]
- Stolze, J.; Suter, D. Quantum Computing: A Short Course from Theory to Experiment; Wiley: Weinheim, Germany, 2004. [Google Scholar]
- Wichert, A. Principles of Quantum Artificial Intelligence; World Scientific: Singapore, 2020. [Google Scholar]
- Sabra, A.; Fung, W.-K. A Fuzzy Cooperative Localisation Framework for Underwater Robotic Swarms. Sensors
**2020**, 20, 5496. [Google Scholar] [CrossRef] - Nădăban, S. From Classical Logic to Fuzzy Logic and Quantum Logic: A General View. Int. J. Comput. Commun. Control.
**2021**, 16, 1841–9836. [Google Scholar] [CrossRef] - Li, Z.; Liu, W.; Li, E.G.; Li, L. Path Planning Method for AUV Docking Based on Adaptive Quantum-Behaved Particle Swarm Optimization. IEEE Access Multidiscip.
**2019**, 7, 78665–78674. [Google Scholar] [CrossRef] - Ivancevic, V.G. Entangled Intelligence: Quantum Computation for swarm robotics. Math. Eng. Sci. Aerosp.
**2018**, 7, 441–451. [Google Scholar] - Koukam, A.; Abbas-Turki, A.; Hilaire, V.; Ruichek, Y. Towards a Quantum Modeling Approach to Reactive Agents. In Proceedings of the 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–22 October 2021; pp. 130–136. [Google Scholar]
- Bonabeau, E.; Theraulaz, G.; Dorigo, M. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, NY, USA, 1999; pp. 3–77. [Google Scholar]
- Şahin, E. Swarm robotics: From sources of inspiration to domains of application. In International Workshop on Swarm Robotics; Şahin, E., Spears, W.M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3342. [Google Scholar]
- Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot.
**2021**, 6, 50. [Google Scholar] [CrossRef] [PubMed] - Soria, E.; Schiano, F.; Floreano, D. Predictive control of aerial swarms in cluttered environments. Nat. Mach. Intell.
**2021**, 3, 545–554. [Google Scholar] [CrossRef] - Ozkan-Aydin, Y.; Goldman, D.I. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks. Sci. Robot.
**2021**, 6, 56. [Google Scholar] [CrossRef] [PubMed] - Mac Lane, S. Categories for the Working Mathematician; Springer: New York, NY, USA, 1978. [Google Scholar]
- Mannone, M. Mathematics, Nature, Art; Palermo University Press: Palermo, Italy, 2019. [Google Scholar]
- Ismail, Z.H.; Hamami, M.G.M. Systematic Literature Review of Swarm Robotics Strategies Applied to Target Search Problem with Environment Constraints. Appl. Sci.
**2021**, 11, 2383. [Google Scholar] [CrossRef] - Chella, A.; Lanza, F.; Seidita, V. Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle. In Engineering Multi-Agent Systems; Weyns, D., Mascardi, V., Ricci, A., Eds.; EMAS 2018. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11375, pp. 320–339. [Google Scholar]
- Dissanayake, M.W.M.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A Solution to Simultaneous Localization and Map Building (SLAM) Problem. IEEE Trans. Robot. Autom.
**2001**, 17, 229–241. [Google Scholar] [CrossRef] [Green Version] - Zhou, Y.; Hu, H.; Liu, Y.; Lin, S.; Ding, Z. A Real-Time and Fully Distributed Approach to Motion Planning for Multirobot Systems. IEEE Trans. Syst. Man Cybern. Syst.
**2019**, 49, 2636–2660. [Google Scholar] [CrossRef] - Umari, H.; Mukhopadhyay, S. Autonomous Robotic Exploration Based on Multiple Rapidly-exploring Randomized Trees. In Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]

**Figure 1.**The considered quantum circuit for $|{q}_{0}\rangle =\frac{1}{\sqrt{2}}|0\rangle +\frac{1}{\sqrt{2}}|1\rangle ,\phantom{\rule{0.166667em}{0ex}}|{q}_{1}\rangle =\sqrt{\frac{2}{3}}|0\rangle +\frac{1}{\sqrt{3}}|1\rangle $. Changing the initializations of ${q}_{0}$ and ${q}_{1}$ through suitable ${R}_{y}$ gates, we can span the different cases.

**Table 1.**Truth tables (reversible equivalents of XNOR gates), representing the interaction between robot 1, ${R}_{1}$ (${q}_{0}$: position, ${q}_{1}$: reward) and robot 2, ${R}_{2}$ (${q}_{2}$: position, ${q}_{3}$: reward). At the beginning (left table), ${R}_{1}$ communicates its position (down/up) and reward (no/yes); then it waits, and, according to its information, ${R}_{2}$ reaches ${R}_{1}$ or not (when ${R}_{2}$ reaches ${R}_{1}$, ${q}_{2}$ becomes equal to ${q}_{0}$). Then (right table), we have the symmetric situation, where ${R}_{2}$ communicates position and reward, and ${R}_{1}$ decides to reach it nor not (if ${R}_{1}$ reaches ${R}_{2}$, ${q}_{0}$ becomes equal to ${q}_{2}$). Equation (8) shows the corresponding permutation matrix.

Gate ${\mathit{t}}_{0}\to {\mathit{t}}_{1}$ | Gate ${\mathit{t}}_{1}\to {\mathit{t}}_{2}$ | ||||||
---|---|---|---|---|---|---|---|

input | output | input | output | ||||

${\mathit{q}}_{\mathbf{0}}$ | ${\mathit{q}}_{\mathbf{1}}$ | ${\mathit{q}}_{\mathbf{0}}$ | ${\mathit{q}}_{\mathbf{2}}$ | ${\mathit{q}}_{\mathbf{2}}$ | ${\mathit{q}}_{\mathbf{3}}$ | ${\mathit{q}}_{\mathbf{2}}$ | ${\mathit{q}}_{\mathbf{0}}$ |

0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |

1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

**Table 2.**Comparisons of measurement outcomes for 1024 shots of the code. S indicates the simulator; C stands for a real quantum computer located in Bogotà, Colombia.

$|{\mathit{q}}_{0}\rangle $ | $|{\mathit{q}}_{1}\rangle $ | $|{\mathit{q}}_{2}\rangle $ (Expected) | Counts for $0,\phantom{\rule{0.166667em}{0ex}}1$ | Device |
---|---|---|---|---|

$|1\rangle $ | $|1\rangle $ | 1 | 0; 1024 | S |

455; 569 | C | |||

$|1\rangle $ | $|0\rangle $ | 0 | 1024; 0 | S |

527; 497 | C | |||

$\frac{1}{\sqrt{2}}|0\rangle +\frac{1}{\sqrt{2}}|1\rangle $ | $|1\rangle $ | uncertain | 494; 530 | S |

502; 522 | C | |||

$\frac{1}{\sqrt{2}}|0\rangle +\frac{1}{\sqrt{2}}|1\rangle $ | $|0\rangle $ | uncertain | 527; 497 | S |

431; 593 | C | |||

$|0\rangle $ | $\sqrt{\frac{2}{3}}|0\rangle +\frac{1}{\sqrt{3}}|1\rangle $ | 0 | 686; 338 | S |

531; 493 | C | |||

$|1\rangle $ | $\sqrt{\frac{2}{3}}|0\rangle +\frac{1}{\sqrt{3}}|1\rangle $ | 0 | 702; 322 | S |

570; 414 | C | |||

$|0\rangle $ | $\frac{1}{\sqrt{3}}|0\rangle +\sqrt{\frac{2}{3}}|1\rangle $ | 1 | 315; 709 | S |

452; 572 | C | |||

$|1\rangle $ | $\frac{1}{\sqrt{3}}|0\rangle +\sqrt{\frac{2}{3}}|1\rangle $ | 1 | 335; 669 | S |

376; 648 | C | |||

$\frac{1}{\sqrt{2}}|0\rangle +\frac{1}{\sqrt{2}}|1\rangle $ | $\sqrt{\frac{2}{3}}|0\rangle +\frac{1}{\sqrt{3}}|1\rangle $ | uncertain | 518; 506 | S |

351; 673 | C | |||

$\frac{1}{\sqrt{2}}|0\rangle +\frac{1}{\sqrt{2}}|1\rangle $ | $\frac{1}{\sqrt{3}}|0\rangle +\sqrt{\frac{2}{3}}|1\rangle $ | uncertain | 508; 516 | S |

433; 591 | C |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mannone, M.; Seidita, V.; Chella, A.
Categories, Quantum Computing, and Swarm Robotics: A Case Study. *Mathematics* **2022**, *10*, 372.
https://doi.org/10.3390/math10030372

**AMA Style**

Mannone M, Seidita V, Chella A.
Categories, Quantum Computing, and Swarm Robotics: A Case Study. *Mathematics*. 2022; 10(3):372.
https://doi.org/10.3390/math10030372

**Chicago/Turabian Style**

Mannone, Maria, Valeria Seidita, and Antonio Chella.
2022. "Categories, Quantum Computing, and Swarm Robotics: A Case Study" *Mathematics* 10, no. 3: 372.
https://doi.org/10.3390/math10030372