Stability Analysis of Equilibria for a Model of Maintenance Therapy in Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
1.1. Mathematical Background
1.2. Biological Background
2. The Modeling of Erythropoiesis
2.1. The Mathematical Model
2.2. The Equilibrium Points and Linearization
2.3. Stability Analysis of the Equilibrium Point
2.3.1. The Real Solutions of the Characteristic Equation
2.3.2. Analysis of the Critical Case
2.3.3. The Transcendental Part of the Characteristic Equation
2.4. Stability Analysis of the Equilibrium Point
2.5. Numerical Simulations
3. The Leukopoiesis Model
3.1. The Mathematical Model
3.2. The Equilibrium Points and Linearization
3.3. Stability Analysis for Equilibrium Point
3.4. Stability Analysis of the Equilibrium Point
3.4.1. The Real Solutions of the Characteristic Equation
3.4.2. The Transcendental Part of the Characteristic Equation
3.5. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abass, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunolgy, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Adimy, M.; Crauste, F.; Ruan, S. A mathematical study of the hematopoiesis process with application to chronic myelogenous leukemia. SIAM J. Appl. Math. 2005, 65, 1328–1352. [Google Scholar] [CrossRef] [Green Version]
- Akushevich, I.; Veremeyeva, G.; Dimov, G.; Ukraintseva, S.; Arbeev, K.; Akleyev, A.; Yashin, A. Modeling hematopoietic system response caused by chronic exposure to ionizing radiation. Radiat. Environ. Biophys. 2011, 50, 299–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childhood, A.; Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukemia: Overview of 42 trials involving 12,000 randomized children. Lancet 1996, 347, 1783–1788. [Google Scholar]
- Pui, C.H.; Evans, W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 2006, 354, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.L.; Vala, M.S.; Barber, J.P.; Karp, J.E.; Smith, B.D.; Matsui, W.; Jones, R.J. Induction of acute lymphocytic leukemia differentiation by maintenance therapy. Leukemia 2007, 21, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Badralexi, I.; Halanay, A.; Mghames, R. A Delay Differential Equations model for maintenance therapy in acute lymphoblastic leukemia. UPB Sci. Bull. Ser. A 2020, 82, 13–24. [Google Scholar]
- Amin, K.; Badralexi, I.; Halanay, A.; Mghames, R. A stability theorem for equilibria of delay differential equations in a critical case and some models of cell evolution. Math. Model. Nat. Phenom. 2021, 16, 36. [Google Scholar] [CrossRef]
- Adimy, M.; Bourfia, Y.; Hbid, M.L.; Marquet, C. Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients. Electr. J. Diff. Equ. 2016, 2016, 1–20. [Google Scholar]
- Munker, R.; Hiller, E.; Glass, J.; Paquette, R. Modern Hematology. Biology and Clinical Management, 2nd ed.; Humana Press: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Parajdi, L.G.; Precup, R.; Bonci, E.; Tomuleasa, C. A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia. Mathematics 2020, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.; Arber, D.; Glader, B.; List, A.; Means, R., Jr.; Paraskevas, F.; Rodgers, G. Wintrobe’s Clinical Hematology, 13th ed.; LWW: Philadelphia, PA, USA, 2013. [Google Scholar]
- Schmiegelow, K.; Nielsen, S.; Frandsen, T.; Nersting, J. Mercaptopurine/Methotrexate Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia. Clinical Facts and Fiction. J. Pediatr. 2014, 36, 503–517. [Google Scholar]
- Colijn, C.; Mackey, M.C. A Mathematical Model for Hematopoiesis: I. Periodic Chronic Myelogenous Leukemia. J. Theor. Biol. 2005, 237, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, D.; Rundell, A.E.; Hannemann, R.; Vik, T.A.; Ramkrishna, D. Optimal Chemotherapy for Leukemia: A model-Based Strategy for Individualized Treatment. PLoS ONE 2014, 9, e109623. [Google Scholar] [CrossRef] [Green Version]
- Bellman, R.; Cooke, K.L. Differential-Difference Equations; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Cooke, K.; Grossman, Z. Discrete Delay, Distribution Delay and Stability Switches. J. Math. Anal. Appl. 1982, 86, 592–627. [Google Scholar] [CrossRef] [Green Version]
- Balea, S.; Halanay, A.; Neamtu, M. A feedback model for leukemia including, cell competition and the action of the immune system. In Proceedings of the ICNPAA World Congress, Narvik, Norway, 15–18 July 2014; Volume 1637, pp. 1316–1324. [Google Scholar]
- Cooke, K.; van den Driessche, P. On Zeroes of Some Transcendental Equations. Funkcialaj Ekvacioj 1986, 29, 7790. [Google Scholar]
Maximal value of the function [9,14] | ||
Maximal value of the function [9] | ||
Parameter for the death rate [14] | ||
Loss of stem cells due to mortality [9] | ||
Rate of asymmetric/symmetric division [18] | ||
Parameter in the Hill function [18] | m | 2 |
Standard half-saturation (estimated) | 3 | |
Instant mortality of mature leukocytes [9] | ||
Amplification factor [9] | 2400 | |
Maximum effect of drug on erythrocytes [15] | ||
Saturation constant for drug on erythrocytes [15] | ||
The supply rate of the 6-MP in the gut [15] | ||
6-MP absorption rate from the gut [15] | ||
6-MP elimination rate from plasma [15] | 5 | |
6-MP to 6-TCN conversion rate [15] | ||
Activity of TPMT enzyme [15] | ||
MM constant for 6-TGN [15] | ||
MeMP elimination rate from erythrocytes [15] | ||
MM constant for MeMP [15] | ||
Stoichiometric coefficient for 6-TGN conversion [15] | 1 | |
6-TGN elimination rate from erythrocytes [15] | ||
Self-renewal duration of erythrocytes [14] | ||
Differentiation duration of erythrocytes [14] | 6 |
Maximal value of the function [9,14] | ||
Maximal value of the function [9] | ||
Loss of stem cells due to mortality [9] | ||
Rate of asymmetric/ symmetric division [18] | ||
Parameter in the Hill function [18] | 2 | |
Standard half-saturation (estimated) | 3 | |
Instant mortality of mature leukocytes [9] | ||
Amplification factor [9] | 2400 | |
Maximum effect of drug on leukocytes [15] | ||
The supply rate of the 6-MP in the gut [15] | ||
6-MP absorption rate from the gut [15] | ||
6-MP elimination rate from plasma [15] | 5 | |
6-MP to 6-TCN conversion rate [15] | ||
Activity of TPMT enzyme [15] | ||
MM constant for 6-TGN [15] | ||
MeMP elimination rate from leukocytes [15] | ||
MM constant for MeMP [15] | ||
Stoichiometric coefficient for 6-TGN Conversion [15] | 1 | |
6-TGN elimination rate from leukocytes [15] | ||
Self-renewal duration of leukocytes [14] | ||
Differentiation duration of leukocytes [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badralexi, I.; Halanay, A.-D.; Mghames, R. Stability Analysis of Equilibria for a Model of Maintenance Therapy in Acute Lymphoblastic Leukemia. Mathematics 2022, 10, 313. https://doi.org/10.3390/math10030313
Badralexi I, Halanay A-D, Mghames R. Stability Analysis of Equilibria for a Model of Maintenance Therapy in Acute Lymphoblastic Leukemia. Mathematics. 2022; 10(3):313. https://doi.org/10.3390/math10030313
Chicago/Turabian StyleBadralexi, Irina, Andrei-Dan Halanay, and Ragheb Mghames. 2022. "Stability Analysis of Equilibria for a Model of Maintenance Therapy in Acute Lymphoblastic Leukemia" Mathematics 10, no. 3: 313. https://doi.org/10.3390/math10030313