Stability in Nonlinear Neutral Caputo q-Fractional Difference Equations
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhàuser: Basel, Switzerland, 2012. [Google Scholar]
- Floreanini, R.; Vinet, L. Symmetries of the q-difference heat equation. Lett. Math. Phys. 1994, 32, 37–44. [Google Scholar] [CrossRef]
- Floreanini, R.; Vinet, L. Quantum symmetries of q-difference equations. J. Math. Phys. 1995, 36, 3134–3156. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Benli, B.; Baleanu, D. A generalized q -Mittag-Lefler function by Caputo fractional linear equations. Abstr. Appl. Anal. 2012, 2012, 1–11. [Google Scholar]
- Abdeljawad, T.; Alzabutz, J.; Zhou, H. A Krasnoselskii Existence Result For Nonlinear Delay Caputo q–Fractional Difference Equations With Applications to Lotka–Volterra Competition Model. Appl. Math. E-Notes 2017, 17, 307–318. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007, 14, 333–344. [Google Scholar] [CrossRef]
- Az-Zo’bi, E.A.; AlZoubi, W.A.; Akinyemi, L.; Alsaraireh, I.W.; Mamat, M. Abundant closed-form solitons for time-fractional integro–differential equation in fluid dynamics. Opt. Quantum Electron. Link Disabl. 2021, 53, 132. [Google Scholar] [CrossRef]
- Ernst, T. A Method for q-Calculus. J. Nonlinear Math. Phys. 2003, 10, 487–525. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Gündoğdu, E.; Baleanu, D. On the Mittag–Leffler stability of Q-fractional nonlinear dynamical systems. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2011, 12, 309–314. [Google Scholar]
- Mansour, Z.S.I. Linear sequential q-difference equations of fractional order. Fract. Calc. Appl. Anal. 2009, 12, 159–178. [Google Scholar]
- Mardanov, M.J.; Mahmudov, N.I.; Sharifov, Y.A. Existence and uniqueness results for q-fractional difference equations with p-Laplacian operators. Adv. Differ. Equ. 2015, 2015, 185. [Google Scholar] [CrossRef][Green Version]
- Zhao, Y.; Chen, H.; Zhang, Q. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 2013, 48. [Google Scholar] [CrossRef]
- Ardjouni, A.; Boulares, H.; Djoudi, A. Stability of nonlinear neutral nabla fractional difference equations. Commun. Optim. Theory 2018, 2018, 1–10. [Google Scholar]
- Alzabut, J.; Abdeljawad, T.; Baleanu, D. Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra competition model. Comput. Anal. Appl. 2018, 25, 889–898. [Google Scholar]
- Butt, R.I.; Abdeljawad, T.; Alqudah, M.A.; Rehman, M. Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach. J. Inequalities Appl. 2019, 2019, 305. [Google Scholar] [CrossRef]
- Butt, R.I.; Abdeljawad, T.; Rehman, M. Stability analysis by fixed point theorems for a class of non-linear Caputo nabla fractional difference equation. Adv. Differ. Equ. 2020, 2020, 209. [Google Scholar] [CrossRef]
- Chen, F. Fixed points and asymptotic stability of nonlinear fractional difference equations. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 1–18. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Z. Asymptotic stability results for nonlinear fractional difference equations. J. Appl. Math. 2012, 2012, 879657. [Google Scholar] [CrossRef]
- Dong, J.; Feng, Y.; Jiang, J. A Note on Implicit Fractional Differential Equations. Math. Aeterna 2017, 7, 261–267. [Google Scholar]
- Mesmouli, M.B.; Ardjouni, A.; Djoudi, A. Nonlinear neutral caputo-fractional difference equations with applications to Lotka-Volterra neutral model. Facta Univ. (NIS) Ser. Math. Inform. 2020, 35, 1475–1488. [Google Scholar] [CrossRef]
- Mesmouli, M.B.; Ardjouni, A.; Iqbal, N. Existence and asymptotic behaviors of nonlinear neutral Caputo nabla fractional difference equations. Afr. Mat. 2022, 33, 1–12. [Google Scholar] [CrossRef]
- Mesmouli, M.B.; Ardjouni, A.; Touafek, N. Stability of advanced nonlinear difference equations. Nonlinear Stud. 2022, 29, 1–8. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Caputo q-fractional initial value problems and a q-analogue Mittag-Lefler function. Nonlinear Sci. Numer. Simul. 2011, 16, 4682–4688. [Google Scholar] [CrossRef]
- Royden, H.L.; Fitzpatrick, P.M. Real Analysis; China Machine Press: Beijing, China, 2000. [Google Scholar]
- Burton, T.A. A fixed point theorem of Krasnoselskii fixed point theorem. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesmouli, M.B.; Ardjouni, A. Stability in Nonlinear Neutral Caputo q-Fractional Difference Equations. Mathematics 2022, 10, 4763. https://doi.org/10.3390/math10244763
Mesmouli MB, Ardjouni A. Stability in Nonlinear Neutral Caputo q-Fractional Difference Equations. Mathematics. 2022; 10(24):4763. https://doi.org/10.3390/math10244763
Chicago/Turabian StyleMesmouli, Mouataz Billah, and Abdelouaheb Ardjouni. 2022. "Stability in Nonlinear Neutral Caputo q-Fractional Difference Equations" Mathematics 10, no. 24: 4763. https://doi.org/10.3390/math10244763
APA StyleMesmouli, M. B., & Ardjouni, A. (2022). Stability in Nonlinear Neutral Caputo q-Fractional Difference Equations. Mathematics, 10(24), 4763. https://doi.org/10.3390/math10244763